Learning Challenges in Natural Language Processing

Swabha Swayamdipta
April 08, 2019

Carnegie Mellon University
Language Technologies Institute

NLP today

NLP today

Contextualized
Representations

NLP today

[Peters et. al., 2018]

[Howard \& Ruder, 2018]

[Radford et. al., 2018]

Contextualized
 Representations

[Devlin et. al., 2018]

NLP today

Large Language
Model
[Radford et. al., 2018]

Contextualized
Representations
[Peters et. al., 2018]

[Howard \& Ruder, 2018]

[Devlin et. al., 2018]

NLP today

Large Language Model
[Radford et. al., 2018]

Contextualized
Representations
Downstream Tasks

[Howard \& Ruder, 2018]

[Devlin et. al., 2018]

NLP today

Large Language Model
[Radford et. al., 2018]

Contextualized
Representations

[Devlin et. al., 2018]

Downstream
Tasks

NLP today

[Peters et. al., 2018]

[Howard \& Ruder, 2018]

Large Language Model

Unsupervised
[Radford et. al., 2018]

Contextualized
Representations

[Devlin et. al., 2018]

A closer look...

On 31 December 1687 the first organized group of Huguenots set sail from the Netherlands to the Dutch East India Company post at the Cape of Good Hope. The largest portion of the Huguenots to settle in the Cape arrived between 1688 and 1689 in seven ships as part of the organised migration, but quite a few arrived as late as 1700; thereafter the numbers declined and only small groups arrived at a time.

The number of new Huguenot colonists declined after what year?

A closer look...

On 31 December 1687 the first organized group of Huguenots set sail from the Netherlands to the Dutch East India Company post at the Cape of Good Hope. The largest portion of the Huguenots to settle in the Cape arrived between 1688 and 1689 in seven ships as part of the organised migration, but quite a few arrived as late as 1700i) thereafter the numbers declined and only small groups arrived at a time.

The number of new Huguenot colonists declined after what year?

A closer look...

On 31 December 1687 the first organized group of Huguenots set sail from the Netherlands to the Dutch East India Company post at the Cape of Good Hope. The largest portion of the Huguenots to settle in the Cape arrived between 1688 and 1689 in seven ships as part of the organised migration, but quite a few arrived as late as 1700;) thereafter the numbers declined and only small groups arrived at a time.

The number of old Acadian colonists declined after the year 1675.
The number of new Huguenot colonists declined after what year?

A closer look...

On 31 December 1687 the first organized group of Huguenots set sail from the Netherlands to the Dutch East India Company post at the Cape of Good Hope. The largest portion of the Huguenots to settle in the Cape arrived between 1688 and 1689 in seven ships as part of the organised migration, but quite a few arrived as late as 1700;) thereafter the numbers declined and only small groups arrived at a time.
The number of old Acadian colonists declined after the year 16/5.
The number of new Huguenot colonists declined after what year?

A closer look...

On 31 December 1687 the first organized group of Huguenots set sail from the Netherlands to the Dutch East India Company post at the Cape of Good Hope. The largest portion of the Huguenots to settle in the Cape arrived between 1688 and 1689 in seven ships as part of the organised migration, but quite a few arrived as late as 1700;) thereafter the numbers declined and only small groups arrived at a time.
The number of old Acadian colonists declined after the year 1675.
The number of new Huguenot colonists declined after what year?

[Jia \& Liang, 201'7]

A closer look...

On 31 December 1687 the first organized group of Huguenots set sail from the Netherlands to the Dutch East India Company post at the Cape of Good Hope. The largest portion of the Huguenots to settle in the Cape arrived between 1688 and 1689 in seven ships as part of the organised migration, but quite a few arrived as late as 1700;) thereafter the numbers declined and only small groups arrived at a time.

The number of old Acadian colonists declined after the year 1675.
The number of new Huguenot colonists declined after what year?

Learning Challenges

Learning Challenges

Part I

Can we incorporate some priors about language to improve our models?

- Syntactic Scaffolds for Semantic Structures (EMNLP 2018)

Learning Challenges

Part I

Can we incorporate some priors about language to improve our models?

- Syntactic Scaffolds for Semantic Structures (EMNLP 2018)

Part II

What in our data is causing models to achieve high performance?

- Annotation

Artifacts in Natural
Language Inference Data (NAACL 2018)

Learning Challenge \#l

Can we incorporate some priors about language?

On 31 December 1687 the first organized group of Huguenots set sail from the Netherlands to the Dutch East India Company post at the Cape of Good Hope. The largest portion of the Huguenots to settle in the Cape arrived between 1688 and 1689 in seven ships as part of the organised migration, but quite a few arrived as late as 1700;) thereafter the numbers declined and only small groups arrived at a time.

The number of new Huguenot colonists declined after what year?

Learning Challenge \#l

Can we incorporate some priors about language?

One kind of prior - Linguistic Structure

On 31 December 1687 the first organized group of Huguenots set sail from the Netherlands to the Dutch East India Company post at the Cape of Good Hope. The largest portion of the Huguenots to settle in the Cape arrived between 1688 and 1689 in seven ships as part of the organised migration, but quite a few arrived as late as 1700;) thereafter the numbers declined and only small groups arrived at a time.
The number of new Huguenot colonists declined after what year?

Learning Challenge \#l

Can we incorporate some priors about language?

One kind of prior - Linguistic Structure Can linguistic structure act as an informative prior?

On 31 December 1687 the first organized group of Huguenots set sail from the Netherlands to the Dutch East India Company post at the Cape of Good Hope. The largest portion of the Huguenots to settle in the Cape arrived between 1688 and 1689 in seven ships as part of the organised migration, but quite a few arrived as late as 1700;) thereafter the numbers declined and only small groups arrived at a time.

The number of new Huguenot colonists declined after what year?

Linguistic Structure: Semantics

Linguistic Structure: Semantics

Who did what to whom?

Linguistic Structure: Semantics

Who did what to whom?

After encouraging them, he told them goodbye and left for Macedonia

Linguistic Structure: Semantics

Who did what to whom?

After encouraging them, he told them goodbye and left for Macedonia

Linguistic Structure: Semantics

Who did what to whom?

Linguistic Structure: Semantics

Who did what to whom?

Linguistic Structure: Semantics

Who did what to whom?

Linguistic Structure: Semantics

Who did what to whom?

Linguistic Structure: Semantics

Who did what to whom?

Linguistic Structure: Semantics

Who did what to whom?

Linguistic Structure: Semantics

Who did what to whom?

This talk: Span-based semantics.

Linguistic Structure: Semantics

Who did what to whom?

This talk: Span-based semantics.

Can span-based semantics serve as a linguistic prior?

Linguistic Structure: Semantics

Who did what to whom?

This talk: Span-based semantics.

Can span-based semantics serve as-alinguistic prion?

A Prior for Semantics

A Prior for Semantics

Syntax - a foundation for sentence meaning / semantics

A Prior for Semantics

Syntax - a foundation for sentence meaning / semantics

After encouraging them, he told them goodbye and left for Macedonia

A Prior for Semantics

Syntax - a foundation for sentence meaning / semantics

A Prior for Semantics

Syntax - a foundation for sentence meaning / semantics
\geqslant Phrase-based syntax (node \rightarrow span)

A Prior for Semantics

Syntax - a foundation for sentence meaning / semantics

Phrase-based syntax (node \rightarrow span)

A Prior for Semantics

Syntax - a foundation for sentence meaning / semantics

Phrase-based syntax (node \rightarrow span)

Key Intuition: Learn from a complementary structure

Syntactic Scaffolds for

 Semantic Structures

 Semantic Structures}

FMNNLP 2018

Structured prediction with an auxiliary structure

Structured prediction with an auxiliary structure

Auxiliary structure: syntax

Structured prediction with an auxiliary structure

Auxiliary structure: syntax

Structured prediction with an auxiliary structure

* Auxiliary structure: syntax

Traditionally a pipeline, both at train and test time [Gildea \&e Jurafsky, 2002]

Structured prediction with an auxiliary structure

* Auxiliary structure: syntax

Traditionally a pipeline, both at train and test time [Gildea \&e Jurafsky, 2002]

* More structured data

Structured prediction with an auxiliary structure

* Auxiliary structure: syntax

Traditionally a pipeline, both at train and test time [Gildea \&e Jurafsky, 2002]

B More structured data
B Cascading errors

Structured prediction with an auxiliary structure

* Auxiliary structure: syntax

Traditionally a pipeline, both at train and test time [Gildea \&e Jurafsky, 2002]

- More structured data

Cascading errors

B Forsaken in most end-to-end models, but at a cost [He et. al, 17; Strubell et. al., 18]

Training Paradigms

Training Paradigms

syntax for training

Syntactic
Pipelines
[Toutanova
et. al., 08; Das
et. al., 14]

Difficulty

Training Paradigms

Difficulty

Training Paradigms

Latent
variables
for syntax
[Zettlemoyer \&e Collins, 05]

Difficulty

Training Paradigms

Latent variables for syntax [Zettlemoyer \& Collins, 05]

Syntactic Pipelines
[Toutanova
et. al., 08; Das
et. al., 14]

Difficulty

Training Paradigms

Latent variables for syntax [Zettlemoyer \&e Collins, 05]

Syntactic Pipelines
[Toutanova
et. al., 08; Das
et. al., 14]

Difficulty

Syntactic Scaffolds

Syntactic Scaffolds

Multitask setting

Syntactic Scaffolds

(V) PropBank Semantic Role Labeling

Multitask setting
\Rightarrow Primary Task \rightarrow Span-based Semantics

VFrame-
Semantic Role Labeling

Coreference
Resolution
Span-based
Semantics

Syntactic Scaffolds

(V) PropBank
Semantic Role
Labeling

Multitask setting
FFrame-
Semantic Role Labeling
Scaffold "Task" \rightarrow Syntax
Coreference Resolution
Syntactic Scaffold

Syntactic Scaffolds

(V) PropBank
Semantic Role
Labeling

Multitask setting
FFrame-
Semantic Role Labeling
Scaffold "Task" \rightarrow Syntax
Full Trees Shallow syntax
Sy Coreference
Resolution

Syntactic Scaffolds

IV PropBank
Semantic Role
Labeling

Multitask setting
(IFrame-
Semantic Role Labeling
Scaffold "Task" \rightarrow Syntax
Full Trees Shallow syntax
Primary Task \rightarrow Span-based Semantics

V Coreference
Resolution
Span-based Semantics
Soft syntax-aware representations avoid cascaded errors

Syntactic Scaffold

Syntactic Scaffolds

IV PropBank
Semantic Role
Labeling

Multitask setting

(IFrame-
Semantic Role Labeling

Scaffold "Task" \rightarrow Syntax
BFull Trees Shallow syntax
Primary Task \rightarrow Span-based Semantics

V Coreference
Resolution
Span-based Semantics
Soft syntax-aware representations avoid cascaded errors

Not required during test

Syntactic

 Scaffold
Shallow Syntactic Prediction

Desired parts of syntactic tree:

Shallow Syntactic Prediction

Desired parts of syntactic tree:

Shallow Syntactic Prediction

Desired parts of syntactic tree:

Span-level classification: For every span, predict phrase category

$$
\mathscr{L}_{2}(\mathbf{x}, \mathbf{z})=-\sum_{\substack{1 \leqslant i \leqslant j \leqslant n \\ 12}} \log p\left(z_{i: j} \mid \mathbf{x}_{i: j}\right)
$$

Training with syntactic scaffolds

x = Input
y = Output Structure
z = Scaffold Structure

Training with syntactic scaffolds

$\mathbf{x}=$ Input
y = Output Structure
z = Scaffold Structure

$\sum_{$| $(\mathbf{x}, \mathbf{z}) \in \mathscr{D}_{2}$ |
| :---: |
| Scaffold |
| Dataset |$} \mathscr{L}_{2}(\mathbf{x}, \mathbf{z} ; \theta, \psi)$

Training with syntactic scaffolds

```
x = Input
y = Output Structure
z = Scaffold Structure
```

$\sum_{\substack{\mathbf{x}, \mathbf{y}) \in \mathscr{D}_{1}}} \mathscr{L}_{1}(\mathbf{x}, \mathbf{y} ; \boldsymbol{\theta}, \boldsymbol{\phi})$	$\sum_{\substack{\text { Primary Task } \\ \text { Primary } \\ \text { Dataset }}}^{\text {Objective }}$	$\mathscr{L}_{2}(\mathbf{x}, \mathbf{z} ; \theta, \psi)$	
		$(\mathbf{x}, \mathbf{z}) \in \mathscr{D}_{2}$	Scaffold. Task
Scaffold	Objective		
Dataset			

Training with syntactic scaffolds

```
x = Input
y = Output Structure
z = Scaffold Structure
```

	$\mathscr{L}_{1}(\mathbf{x}, \mathbf{y} ; \theta, \phi$	+ δ	$\sum \mathscr{L}_{2}(\mathbf{x}, \mathbf{z} ; \theta, \psi)$	
$(\mathbf{x}, \mathbf{y}) \in \mathscr{D}_{1}$	Primary Task	Mixing	$(\mathbf{x}, \mathbf{z}) \in \mathscr{D}_{2}$	Scaffold Task
Primary	Objective	Ratio	Scaffold	Objective
Dataset			Dataset	

Training with syntactic scaffolds

```
x = Input
y = Output Structure
z = Scaffold Structure
```

\sum	$1(\mathbf{x}, \mathbf{y} \theta, \phi$	δ		$\left.P_{2}(\mathbf{x}, \mathbf{z} \Theta) \psi\right)$
$(\mathbf{x}, \mathbf{y}) \in \mathscr{D}_{1}$	Primary Task	Mixing	$(\mathbf{x}, \mathbf{z}) \in \mathscr{D}_{2}$	Scaffold Task
Primary	Objective	Ratio	Scaffold	Objective
Dataset			Dataset	

Shared
input parameters

The primary objective

The primary objective

Same structures must be scored in both the primary and the scaffold task.

The primary objective

Same structures must be scored in both the primary and the scaffold task.

B Span-based classification, with aggressive pruning [Lee et. al., 2017]

The primary objective

Same structures must be scored in both the primary and the scaffold task.

* Span-based classification, with aggressive pruning [Lee et. al., 2017]

Semi-Markov Conditional Random Fields
[Sarawagi et. al. 2004]

Semi-Markov CRFs

After	encouraging	them	he	told	them	goodbye	and	left	for	Macedonia
	ARGMI-TIMP		ARGO					av	04	ARGZ

Semi-Markov CRFs

| After | encouraging | them |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| ARGMI-TMIP | he | |
| ARGO | | | told them goodbye and left for Macedonia

Globally normalized model for segmentations (s) of a sentence (x)

Semi-Markov CRFs

Globally normalized model for segmentations (s) of a sentence (x)

Semi-Markov CRFs

After	encouraging	them	he	told	them	goodbye	and	left	for	Macedonia
	ARGMM-TMIP		RGG					ave	04	ARG2

Globally normalized model for segmentations (s) of a sentence (x)

Generalization of CRFs [Lafferty et. al., ol]:

Semi-Markov CRFs

| After | encouraging | them |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| ARGMI-TMIP | he | |
| ARGO | | | told them goodbye and left for Macedonia

Globally normalized model for segmentations (s) of a sentence (\mathbf{x})

Generalization of CRFs [Lafferty et. al., ol]:
label and length of an input segment

Semi-Markov CRFs

| After | encouraging | them |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| ARGMI-TMIP | he | |
| ARGO | | | told them goodbye and left for Macedonia

Globally normalized model for segmentations (s) of a sentence (x)

Generalization of CRFs [Lafferty et. al., ol]:

$$
s=\left\langle i, j, y_{i: j}\right\rangle
$$

B label and length of an input segment

Semi-Markov CRFs

Globally normalized model for segmentations (s) of a sentence (x)

Generalization of CRFs [Lafferty et. al., ol]:

$$
s=\left\langle i, j, y_{i: j}\right\rangle
$$

B label and length of an input segment

$$
\Phi(\mathbf{x}, \mathbf{s})=\sum_{k=1}^{m} \phi\left(s_{k}, x_{i_{k}: j_{k}}\right)
$$

Semi-Markov CRFs

After	encouraging	them	he	told	them	goodbye	and	left	for	Macedonia
	ARGIV-TMP		ARGO					ave		ARGZ

Globally normalized model for segmentations (s) of a sentence (\mathbf{x})

Generalization of CRFs [Lafferty et. al., ol]:

$$
s=\left\langle i, j, y_{i: j}\right\rangle
$$

B label and length of an input segment
B Training and inference $\rightarrow \mathrm{O}$ (ndl) dynamic programs, with a Oth-order Markovian assumption

$$
\Phi(\mathbf{x}, \mathbf{s})=\sum_{k=1}^{m} \phi\left(s_{k}, x_{i_{k}: j_{k}}\right)
$$

Model architecture

Model architecture

Model architecture

Model architecture

Model architecture

Model architecture

Model architecture

Model architecture

Learn scaffold score when syntactic annotations available.

Results

Results

\square Yang \&e Mitchell, 2017
\square Semi-CRF Baseline
NP-PP Scaffold

Results

\square He et. al., 2017
He et. al., 2018
Tan et. al., 2018
Semi-CRF Baseline NP-PP Scaffold

CoNLL 2012 Span SRL

Results

Yang \&e Mitchell, 2017
Semi-CRF Baseline NP-PP Scaffold

He et. al., 2017

He et. al., 2018
Tan et. al., 2018
Semi-CRF Baseline

NP-PP Scaffold
\square Lee et. al., 2017
NP Scaffold

Coreference

Effect of Contextualized
 Representations

- Note: These results are not included in the paper.

Recap: Learning Challenge \#1

Can linguistic structure act as an informative prior for improving our models?

Recap: Learning Challenge \#l

Can linguistic structure act as an informative prior for improving our models?

Recap: Learning Challenge \#1

Can linguistic structure act as an informative prior for improving our models?

Recap: Learning Challenge \#1

Can linguistic structure act as an informative prior for improving our models?

Recap: Learning Challenge \#l

Can linguistic structure act as an informative prior for improving our models?

Looking ahead: Predicted Structure

Looking ahead:
 Structured Transformation

Looking ahead:
 Structured Transformation

Looking ahead:
 Structured Transformation

Looking ahead:

Structured Transformation

Part II

Confusion of the Muppets

On 31 December 1687 the first organized group of Huguenots set sail from the Netherlands to the Dutch East India Company post at the Cape of Good Hope. The largest portion of the Huguenots to settle in the Cape arrived between 1688 and 1689 in seven ships as part of the organised migration, but quite a few arrived as late as 1700;) thereafter the numbers declined and only small groups arrived at a time.

The number of old Acadian colonists declined after the year 1675 .
The number of new Huguenot colonists declined after what year?

Learning Challenges

Part I

Can linguistic structure act as an informative prior for improving our models?

I Syntactic Scaffolds for Semantic
Structures (EMNNLP 2018)

Part II

What in our data is causing models to achieve high performance?

- Annotation Artifacts in Natural Language Inference Data (NAACL 2018)

Annotation Artifacts in Natural Language Inference Data

NAACL 2018

Natural Language Inference (NLI)

Given a premise, is a hypothesis true, false or neither?

Natural Language Inference (NLI)

Given a premise, is a hypothesis true, false or neither?
Premise
Two dogs are running through a field.
Hypothesis
The pets are sitting on a couch.

O True
\rightarrow Entailment

O False
\rightarrow Contradiction

O Cannot Say \rightarrow Neutral

Natural Language Inference (NLI)

Given a premise, is a hypothesis true, false or neither?
Premise
Two dogs are running through a field.
Hypothesis
The pets are sitting on a couch.

OTrue \rightarrow Entailment
False $\quad \rightarrow$ Contradiction
O Cannot Say \rightarrow Neutral

NLI Datasets

Stanford NLI [Bowman et. al, 2015] 570 K MMulti-genre NLI [Williams et. al., 2017] 433 K

NLI Datasets

Premise

Stanford NLI [Bowman et. al, 2015] 570 K Multi-genre NLI [Williams et. al., 2017] 433 K

NLI Datasets

Stanford NLI [Bowman et. al, 2015] 570 K Multi-genre NLI [Williams et. al., 2017] 433 K

NLI Datasets

NLI Datasets

NLI Datasets

NLI Datasets

Lots of progress

\#	Team Name	Kernel	Team Members	Score ${ }^{\text {(2) }}$	Entries	Last
1	Allen Lao		(9)	0.86443	4	3 mo
2	Anonymous		9	0.86351	2	4mo
3	sherry77		-	0.85034	2	12d
4	Ariel			0.84953	10	13d
5	ysffirst		4	0.84718	6	13d
6	ArielY		9	0.84687	4	12d
7	mattpeters		1	0.84595	7	3 mo
			-			
\bigcirc	Bidirectional LSTM		dis	0.67507		
104	gabrielalmeida		\1	0.67313	5	8mo
105	Zippy		9	0.67160	2	1 y
106	kudkudak		$\underline{4}$	0.66435	2	1 y
107	Shawn Tan		\%	0.65271	1	6d
9	CBOW		dis	0.65200		

Lots of progress

MNNLI Leaderboard

NLI as Text Classification

Two dogs are running through a field.

Premise

The pets are sitting on a couch.

Hypothesis

A simple experiment

A simple experiment

A simple experiment

Given no premise, is a hypothesis true, false or neither?

A simple experiment

Given no premise, is a hypothesis true, false or neither?

The little boy is diving off the diving
 Hypothesis
 board because he is an excellent swimmer.

O True
\rightarrow Entailment

O False
\rightarrow Contradiction

O Cannot Say $\rightarrow \mathbb{N e}$ utral

Surprising Results!

Can we filter out

examples with artifacts?

Hypothesis

Can we filter out

examples with artifacts?

Hypothesis

Revisiting NLI models

DAIM - Decomposable Attention Model [Parikh et. al. 2016] ESIM - Enhanced Sequential Inference Model [Chen et. al., 2017] DIIN - Densely Interactive Inference Network [Gong et. al. 2018]

Revisiting NLI models

MultiNLI
 Mismatched

MultiNLI Matched

DAIVI - Decomposable Attention Model [Parikh et. al. 2016] FSIM - Enhanced Sequential Inference Model [Chen et. al., 2017] DIIN - Densely Interactive Inference Network [Gong et. al. 2018]

Revisiting NLI models

DAIM - Decomposable Attention Model [Parikh et. al. 2016] ESIMM - Enhanced Sequential Inference Model [Chen et. al., 2017] DIIN - Densely Interactive Inference Network [Gong et. al. 2018]

Artifacts by NLI Class

Artifacts by NLI Class

Some men and boys are playing frisbee in a grassy area.

Premise

Artifacts by NLI Class

```
Some men and boys are playing frisbee in a grassy area.
```


Premise

> A middle-aged man works under the engine of a train on rail tracks.

Premise

Generalization

People play frisbee outdoors.

Æntailment Hypothesis

Modifiers

A man is doing work on a black Amtrak train.

Neutral Hypothesis

Artifacts by NLI Class

```
Some men and boys are playing frisbee in a grassy area.
```


Premise

> A middle-aged man works under the engine of a train on rail tracks.

Premise

Generalization

People play frisbee outdoors.

Entailment Hypothesis

Modifiers

A man is doing work on a black Amtrak train.

Neutral Hypothesis

Contradiction Hypothesis

Premise racing on racetrack.

Annotation Artifacts

Two dogs are running through a field.

Premise

There are animals outdoors.

> Some puppies are
> running to catch a stick.

The pets are sitting on
a couch.

Annotation Artifacts

Can we filter out

 examples with artifacts?

Hypothesis

Can we filter out

 examples with artifacts?

Hypothesis

Hard examples exhibit their own artifacts!

Can we filter out examples with artifacts?

Hypothesis

Hard examples exhibit their own artifacts!
*Artifacts are still valid examples...

Looking ahead:
 Learning from Datasets with Artifacts

Looking ahead: Learning from Datasets with Artifacts

Intuition: Models which exploit artifacts == models which can detect artifacts

Looking ahead: Learning from Datasets with Artifacts

Intuition: Models which exploit artifacts == models which can detect artifacts

Stylistic global features

Looking ahead: Learning from Datasets with Artifacts

(Intuition: Models which exploit artifacts == models which can detect artifacts

* Stylistic global features
- Subsampling large datasets \rightarrow weight each example based on how representative it could be [coleman et. al., 2018]

Easy
Hard

Looking Ahead: Improved Data Collection

Looking Ahead: Improved Data Collection

Partial input baselines. E.g. SWAG [zellers et. al., 2018], DROP [Dua et. al., 2019], Diverse NLI [Poliak et. al., 2018]

Looking Ahead: Improved Data Collection

Partial input baselines. E.g. SWAG [zellers et. al., 2018], DROP [Dua et. al., 2019], Diverse NLI [Poliak et. al., 2018]

Alternatives to human elicitation for building datasets?

Looking Ahead: Improved Data Collection

Partial input baselines. E.g. SWAG [zellers et. al., 2018], DROP [Dua et. al., 2019], Diverse NLI [Poliak et. al., 2018]

Alternatives to human elicitation for building datasets?

In conclusion :
 It's an exciting time for NLP!

In conclusion :
 It's an exciting time for NLP!

The Alcw jork eimes

Finally, a Machine That Can Finish Your Sentence

Completing someone else's thought is not an easy trick for A.I. But new systems are starting to crack the code of natural language.

In conclusion Learning Challenges

Part I

Can linguistic structure act as an informative prior to improve our models?

Predicted structure can help representation learning.

Part II

What in our data is causing models to achieve high performance?

Need models robust to artifacts.

Thanks!

www http://www.cs.cmu.edu/~Sswayamd
 swabhs swabhz

