Learning Challenges in Natural Language Processing

Swabha Swayamdipta April 08, 2019

Carnegie Mellon University Language Technologies Institute

Contextualized Representations

[Peters et. al., 2018]

[Howard & Ruder, 2018]

[Devlin et. al., 2018]

On 31 December 1687 the first organized group of Huguenots set sail from the Netherlands to the Dutch East India Company post at the Cape of Good Hope. The largest portion of the Huguenots to settle in the Cape arrived between 1688 and 1689 in seven ships as part of the organised migration, but quite a few arrived as late as 1700; thereafter the numbers declined and only small groups arrived at a time.

On 31 December 1687 the first organized group of Huguenots set sail from the Netherlands to the Dutch East India Company post at the Cape of Good Hope. The largest portion of the Huguenots to settle in the Cape arrived between 1688 and 1689 in seven ships as part of the organised migration, but quite a few arrived as late as 1700; thereafter the numbers declined and only small groups arrived at a time.

On 31 December 1687 the first organized group of Huguenots set sail from the Netherlands to the Dutch East India Company post at the Cape of Good Hope. The largest portion of the Huguenots to settle in the Cape arrived between 1688 and 1689 in seven ships as part of the organised migration, but quite a few arrived as late as 1700; thereafter the numbers declined and only small groups arrived at a time.

The number of old Acadian colonists declined after the year 1675.

The number of new Huguenot colonists declined after what year?

[Jia & Liang, 2017] Percy Liang [AI Frontiers 18]

On 31 December 1687 the first organized group of Huguenots set sail from the Netherlands to the Dutch East India Company post at the Cape of Good Hope. The largest portion of the Huguenots to settle in the Cape arrived between 1688 and 1689 in seven ships as part of the organised migration, but quite a few arrived as late as 1700; thereafter the numbers declined and only small groups arrived at a time.

The number of old Acadian colonists declined after the year 1675.

The number of new Huguenot colonists declined after what year?

[Jia & Liang, 2017]

On 31 December 1687 the first organized group of Huguenots set sail from the Netherlands to the Dutch East India Company post at the Cape of Good Hope. The largest portion of the Huguenots to settle in the Cape arrived between 1688 and 1689 in seven ships as part of the organised migration, but quite a few arrived as late as 1700; thereafter the numbers declined and only small groups arrived at a time.

The number of old Acadian colonists declined after the year 1675.

The number of new Huguenot colonists declined after what year?

[Jia & Liang, 2017]

On 31 December 1687 the first organized group of Huguenots set sail from the Netherlands to the Dutch East India Company post at the Cape of Good Hope. The largest portion of the Huguenots to settle in the Cape arrived between 1688 and 1689 in seven ships as part of the organised migration, but quite a few arrived as late as 1700; thereafter the numbers declined and only small groups arrived at a time.

The number of old Acadian colonists declined after the year 1675.

The number of new Huguenot colonists declined after what year?

[Jia & Liang, 2017]

Learning Challenges

Learning Challenges

Part I

Can we incorporate some priors about language to improve our models?

Syntactic Scaffolds
 for Semantic
 Structures
 (EMNLP 2018)

Learning Challenges

Part I

Can we incorporate some priors about language to improve our models?

Syntactic Scaffolds
 for Semantic
 Structures
 (EMNLP 2018)

Part II

What in our data is causing models to achieve high performance?

Annotation
Artifacts in Natural
Language Inference
Data (NAACL 2018)

Learning Challenge #1

Can we incorporate some priors about language?

On 31 December 1687 the first organized group of Huguenots set sail from the Netherlands to the Dutch East India Company post at the Cape of Good Hope. The largest portion of the Huguenots to settle in the Cape arrived between 1688 and 1689 in seven ships as part of the organised migration, but quite a few arrived as late as 1700; thereafter the numbers declined and only small groups arrived at a time.

Learning Challenge #1

Can we incorporate some priors about language?

One kind of prior - Linguistic Structure

On 31 December 1687 the first organized group of Huguenots set sail from the Netherlands to the Dutch East India Company post at the Cape of Good Hope. The largest portion of the Huguenots to settle in the Cape arrived between 1688 and 1689 in seven ships as part of the organised migration, but quite a few arrived as late as 1700; thereafter the numbers declined and only small groups arrived at a time.

Learning Challenge #1

Can we incorporate some priors about language?

One kind of prior - Linguistic Structure

Can linguistic structure act as an informative prior?

On 31 December 1687 the first organized group of Huguenots set sail from the Netherlands to the Dutch East India Company post at the Cape of Good Hope. The largest portion of the Huguenots to settle in the Cape arrived between 1688 and 1689 in seven ships as part of the organised migration, but quite a few arrived as late as 1700; thereafter the numbers declined and only small groups arrived at a time.

>Who did what to whom?

After encouraging them, he told them goodbye and left for Macedonia

>Who did what to whom?

>Who did what to whom?

>Who did what to whom?

>Who did what to whom?

>Who did what to whom?

This talk: **Span**-based semantics.

>Who did what to whom?

This talk: **Span**-based semantics.

Can span-based semantics serve as a linguistic prior?

>Who did what to whom?

This talk: **Span**-based semantics.

Can span-based semantics serve as a linguistic prior?

A Prior for Semantics

A Prior for Semantics

Syntax - a foundation for sentence meaning / semantics

A Prior for Semantics

Syntax - a foundation for sentence meaning / semantics

After encouraging them, he told them goodbye and left for Macedonia
Syntax - a foundation for sentence meaning / semantics

Syntax - a foundation for sentence meaning / semantics

▷Phrase-based syntax (node \rightarrow span)

Syntax - a foundation for sentence meaning / semantics

▷Phrase-based syntax (node \rightarrow span)

Syntax - a foundation for sentence meaning / semantics

▷Phrase-based syntax (node \rightarrow span)

Key Intuition: Learn from a **complementary** structure

Syntactic Scaffolds for Semantic Structures

EMNLP 2018

S.

Sam Thomson Kenton Lee Luke Zettlemoyer Chris Dyer Noah A. Smith

Auxiliary structure: **syntax**

Auxiliary structure: **syntax**

Auxiliary structure: **syntax**

Traditionally a pipeline, both at train and test time [Gildea & Jurafsky, 2002]

Auxiliary structure: **syntax**

- Traditionally a pipeline, both at train and test time [Gildea & Jurafsky, 2002]
 - More structured data

Auxiliary structure: **syntax**

- Traditionally a pipeline, both at train and test time [Gildea & Jurafsky, 2002]
 - More structured data
 - Cascading errors

Primary Structure

Auxiliary structure: **syntax**

- Traditionally a pipeline, both at train and test time [Gildea & Jurafsky, 2002]
 - More structured data
 - Cascading errors
- Forsaken in most end-to-end models, but at a cost [He et. al, 17; Strubell et. al., 18]

Primary Structure (Span-based Semantics)

Syntax-free training

Syntax for training

Syntax-free End-to-end training modeling [He et. al.,17] Syntactic Pipelines Syntax for [Toutanova training et. al., 08; Das et. al., 14] Difficulty

Syntax-free training	End-to-end modeling [He et. al.,17]	Latent variables for syntax [Zettlemoyer & Collins, 05]
Syntax for training		Syntactic Pipelines [Toutanova et. al., 08; Das et. al., 14]
	Difficu	lty

Syntax-free training	End-to-end modeling [He et. al.,17]		Latent variables for syntax [Zettlemoyer & Collins, 05]
Syntax for training		Joint Modeling [Swayamdipta et. al., 16]	Syntactic Pipelines [Toutanova et. al., 08; Das et. al., 14]
		Difficulty	

Multitask setting

Multitask setting

 \triangleright Primary Task \rightarrow Span-based Semantics

✓ PropBank Semantic Role Labeling

Frame-Semantic Role Labeling

Coreference Resolution

Input

Multitask setting

 \triangleright Primary Task \rightarrow Span-based Semantics

 \mathbb{S} Scaffold "Task" \rightarrow Syntax

✓ PropBank Semantic Role Labeling

✓Frame-Semantic Role Labeling

Coreference Resolution

Syntactic

Scaffold

Input

Multitask setting

 \triangleright Primary Task \rightarrow Span-based Semantics

Scaffold "Task"→Syntax

Full Trees Shallow syntax

Input

Syntactic

Scaffold

✓ PropBank Semantic Role Labeling

✓Frame-Semantic Role Labeling

Coreference Resolution

Multitask setting

 \triangleright Primary Task \rightarrow Span-based Semantics

Scaffold "Task"→Syntax

▶Full Trees Shallow syntax

Soft syntax-aware representations avoid cascaded errors

Syntactic Scaffold oid Input

✓ PropBank Semantic Role Labeling

Frame-Semantic Role Labeling

Coreference Resolution

Multitask setting

 \triangleright Primary Task \rightarrow Span-based Semantics

Scaffold "Task"→Syntax

▶Full Trees Shallow syntax

Soft syntax-aware representations avoid cascaded errors

▶Not required during test

Syntactic Scaffold Oid Input

V PropBank

Labeling

Labeling

Frame-

Semantic Role

Semantic Role

Shallow Syntactic Prediction

Desired parts of syntactic tree:

Shallow Syntactic Prediction

Desired parts of syntactic tree:

Shallow Syntactic Prediction

Desired parts of syntactic tree:

Span-level classification: For every span, predict phrase category

$$\mathscr{L}_{2}(\mathbf{x}, \mathbf{z}) = -\sum_{1 \leq i \leq j \leq n} \log p(z_{i:j} \mid \mathbf{x}_{i:j})$$

Training with syntactic scaffolds

x = Input y = Output Structure z = Scaffold Structure

Training with syntactic scaffolds

x = Input y = Output Structure z = Scaffold Structure

 $\sum_{\substack{(\mathbf{X},\mathbf{Z})\in \mathcal{D}_2\\ \mathbf{Scaffold}\\ \mathbf{Dataset}}} \mathscr{L}_2(\mathbf{X},\mathbf{Z};\theta,\psi)$

Training with syntactic scaffolds

 $\mathbf{x} = \mathbf{Input}$ y = Output Structure z = Scaffold Structure

 $\mathscr{L}_1(\mathbf{x}, \mathbf{y}; \theta, \phi)$ **)**

 $(\mathbf{x},\mathbf{y})\in \mathcal{D}_1$ **Primary**

Dataset

Primary Task Objective

 $\sum \mathscr{L}_2(\mathbf{x},\mathbf{z};\theta,\psi)$ $(\mathbf{X},\mathbf{Z}) \in \mathcal{D}_2$ Scaffold Dataset

Scaffold Task Objective

Training with syntactic scaffolds

x = Input y = Output Structure z = Scaffold Structure

$$\sum_{\substack{(\mathbf{x},\mathbf{y})\in\mathcal{D}_1\\ \text{Primary}}} \mathscr{L}_1(\mathbf{x},\mathbf{y};\theta,\phi) + \delta \sum_{\substack{(\mathbf{x},\mathbf{z})\in\mathcal{D}_2\\ \text{Objective}}} + \delta \sum_{\substack{(\mathbf{x},\mathbf{z})\in\mathcal{D}_2\\ \text{Ratio}}} Mixing_{\substack{(\mathbf{x},\mathbf{z})\in\mathcal{D}_2\\ \text{Ratio}}}$$

 $\mathscr{L}_2(\mathbf{X}, \mathbf{Z}; \boldsymbol{\theta}, \boldsymbol{\psi})$ Scaffold Task

Objective

Primary Dataset

13

Dataset

Training with syntactic scaffolds

x = Input y = Output Structure z = Scaffold Structure

$$\mathcal{L}_{1}(\mathbf{x},\mathbf{y}\boldsymbol{\theta},\boldsymbol{\theta})$$

 $(\mathbf{x},\mathbf{y})\in \mathcal{D}_1$

Primary

Dataset

Primary Task Objective

 $\delta + \delta$ Mixing (X,

Ratio

 $(\mathbf{x},\mathbf{z}) \in \mathcal{D}_2$ Scaffold Dataset

 $\sum \mathscr{L}_{2}(\mathbf{x}, \mathbf{z}(\theta, \psi))$

Scaffold Task Objective

Shared input parameters

The primary objective

The primary objective

Same structures must be scored in both the primary and the scaffold task.

The primary objective

Same structures must be scored in both the primary and the scaffold task.

Span-based classification, with aggressive pruning [Lee et. al., 2017]
The primary objective

Same structures must be scored in both the primary and the scaffold task.

Span-based classification, with aggressive pruning [Lee et. al., 2017]

Semi-Markov Conditional Random Fields [Sarawagi et. al. 2004]

After	encouraging	them	he	told	them	goodbye	and	left	for	Macedonia	
	ARGM-TMP		ARGO	•0				ave.(04	ARG2	

Globally normalized model for segmentations (s) of a sentence (x)

Globally normalized model for segmentations (s) of a sentence (x)

 $p(\mathbf{s} \mid \mathbf{x})$

Globally normalized model for segmentations (**s**) of a sentence (**x**)

 $p(\mathbf{S} \mid \mathbf{X})$

Generalization of CRFs [Lafferty et. al., 01]:

Globally normalized model for segmentations (s) of a sentence (x)

 $p(\mathbf{s} \mid \mathbf{x})$

Generalization of CRFs [Lafferty et. al., 01]:

label and length of an input segment

Globally normalized model for segmentations (**s**) of a sentence (**x**)

 $p(\mathbf{s} \mid \mathbf{x})$

- Generalization of CRFs [Lafferty et. al., 01]:
 - label and length of an input segment

 $s = \langle i, j, y_{i:j} \rangle$

Globally normalized model for segmentations (s) of a sentence (x)

Generalization of CRFs [Lafferty et. al., 01]:

label and length of an input segment

 $\Phi(\mathbf{x}, \mathbf{s}) = \sum_{k=1}^{m} \phi(s_k, x_{i_k:j_k})$

 $p(\mathbf{s} \mid \mathbf{x})$

 $s = \langle i, j, y_{i:i} \rangle$

Globally normalized model for segmentations (s) of a sentence (x)

Generalization of CRFs [Lafferty et. al., 01]:

label and length of an input segment

▶ Training and inference → O(ndl) dynamic programs, with a Oth-order Markovian assumption

$$\Phi(\mathbf{x}, \mathbf{s}) = \sum_{k=1}^{m} \phi(s_k, x_{i_k:j_k})$$

 $p(\mathbf{S} \mid \mathbf{X})$

 $s = \langle i, j, y_{i:i} \rangle$

After encouraging them, he said goodbye and left for Macedonia

Learn scaffold score when syntactic annotations available.

Effect of Contextualized Representations

• Note: These results are not included in the paper.

After	encouraging encourage.02	them ,	he	told	them	goodbye	and	left eave.04	for	Macedonia
	ARGM-TMP		ARG0		ARG2	ARG1				
		ARG1								
	ARGM-TMP		ARGO							ARG2
and the second second										

Looking ahead: Predicted Structure

Looking ahead: Predicted Structure **Syntax** Sentence **Semantics**

Looking ahead: Predicted Structure

Looking ahead: Predicted Structure

Looking ahead: Structured Transformation

Looking ahead: Structured Transformation

Iyyer et. al. [NAACL 2018]

Iyyer et. al. [NAACL 2018]

Iyyer et. al. [NAACL 2018]

Recap: Confusion of the Muppets

On 31 December 1687 the first organized group of Huguenots set sail from the Netherlands to the Dutch East India Company post at the Cape of Good Hope. The largest portion of the Huguenots to settle in the Cape arrived between 1688 and 1689 in seven ships as part of the organised migration, but quite a few arrived as late as 1700; thereafter the numbers declined and only small groups arrived at a time.

The number of old Acadian colonists declined after the year 1675.

The number of new Huguenot colonists declined after what year?

[Jia & Liang, 2017]

Learning Challenges

Part I

Can linguistic structure act as an informative prior for improving our models?

> Syntactic Scaffolds for Semantic Structures (EMNLP 2018)

Part II

What in our data is causing models to achieve high performance?

Annotation
Artifacts in Natural
Language Inference
Data (NAACL 2018)

Annotation Artifacts in Natural Language Inference Data

NAACL 2018

Suchin Gururangan*

Omer Levy

Roy Schwartz

Noah A. Smith Bowman

*equal contribution

Natural Language Inference (NLI)

Given a premise, is a hypothesis true, false or neither?

Natural Language Inference (NLI)

Given a premise, is a hypothesis true, false or neither?

Premise	Two dogs are running through	nning through a field. sitting on a couch. Atailment ntradiction utral
Hypothesis	The pets are sitting on a co	uch.
O T:	Prue → Entailment	
O Fa	$\neg alse \rightarrow Contradiction$	
	Jannot Say → <mark>Neutral</mark>	

Natural Language Inference (NLI)

Given a premise, is a hypothesis true, false or neither?

Stanford NLI [Bowman et. al, 2015] 570 K Multi-genre NLI [Williams et. al., 2017] 433 K

Two dogs are running through a field.

Premise

Stanford NLI [Bowman et. al, 2015] 570 K Multi-genre NLI [Williams et. al., 2017] 433 K

Stanford NLI [Bowman et. al, 2015] 570 K Multi-genre NLI [Williams et. al., 2017] 433 K

Lots of progress

#	Team Name	Kernel	Team Members	Score 😮	Entries	Last
1	Allen Lao			0.86443	4	3mo
2	Anonymous			0.86351	2	4mo
3	sherry77			0.85034	2	12d
4	Ariel			0.84953	10	13d
5	ysffirst			0.84718	6	13d
6	ArielY			0.84687	4	12d
7	mattpeters			0.84595	7	3mo

Bidirectional LST	M 0.67507	
104 gabrielalmeida	0.67313 5	8mo
105 Zippy	0.67160 2	1y
106 kudkudak	£ 0.66435 2	1у
107 Shawn Tan	0.65271 1	6d
♀ СВО₩	0.65200	

Lots of progress

#	Team Name	Kernel	Team Members	Score 🕑	Entries	Last
1	Allen Lao			0.86443	4	3mo
2	Anonymous		-	0.86351	2	4mo
3	sherry77		-	0.85034	2	12d
4	Ariel			0.84953	10	13d
5	ysffirst			0.84718	6	13d
6	ArielY			0.84687	4	12d
7	mattpeters			0.84595	7	3mo

Q	Bidirectional LSTM		0.67507		
104	gabrielalmeida		0.67313	5	8mo
105	Zippy		0.67160	2	1y
106	kudkudak	<u>k</u>	0.66435	2	1y
107	Shawn Tan		0.65271	1	6d
Q	CBOW		0.65200		

MNLI Leaderboard

NLI as Text Classification

fastText [Joulin et. al. 2017]

Given **no** premise, is a hypothesis true, false or neither?

Given **no** premise, is a hypothesis true, false or neither?

Hypothesis

The little boy is diving off the diving board because he is an excellent swimmer.

 \bigcirc True \rightarrow **Entailment**

○ False → Contradiction

 \bigcirc Cannot Say \rightarrow Neutral

Surprising Results!

Over 50% of NLI examples can be correctly classified **without** ever observing the premise! [Poliak et. al., 2018, Glockner et. al., 2018]

Hypothesis

Hypothesis

Revisiting NLI models

DAM - Decomposable Attention Model [Parikh et. al. 2016]
ESIM - Enhanced Sequential Inference Model [Chen et. al., 2017]
DIIN - Densely Interactive Inference Network [Gong et. al. 2018]

Revisiting NLI models

DAM - Decomposable Attention Model [Parikh et. al. 2016]
ESIM - Enhanced Sequential Inference Model [Chen et. al., 2017]
DIIN - Densely Interactive Inference Network [Gong et. al. 2018]

Revisiting NLI models

DAM - Decomposable Attention Model [Parikh et. al. 2016]
ESIM - Enhanced Sequential Inference Model [Chen et. al., 2017]
DIIN - Densely Interactive Inference Network [Gong et. al. 2018]

Some men and boys are playing frisbee in a grassy area.

Premise

Generalization

People play frisbee **outdoors**.

Entailment Hypothesis

Some men and boys are playing frisbee in a grassy area.

Premise

Generalization

People play frisbee outdoors.

Entailment Hypothesis

A middle-aged man works under the engine of a train on rail tracks.

Premise

Modifiers

A man is doing work on a **black** Amtrak train.

Neutral Hypothesis

Annotation Artifacts

Annotation Artifacts

Hard examples exhibit their own artifacts!

Hard examples exhibit their own artifacts!

Artifacts are still valid examples...

Looking ahead: Learning from Datasets with Artifacts
Looking ahead: Learning from Datasets with Artifacts

Intuition: Models which exploit artifacts == models which can detect artifacts

Looking ahead: Learning from Datasets with Artifacts

- Intuition: Models which exploit artifacts == models which can detect artifacts
 - Stylistic global features

Looking ahead: Learning from Datasets with Artifacts

- Intuition: Models which exploit artifacts == models which can detect artifacts
 - Stylistic global features
- Subsampling large datasets → weight each example based on how representative it could be [Coleman et. al., 2018]

Hard

Partial input baselines. E.g. SWAG [Zellers et. al., 2018], DROP [Dua et. al., 2019], Diverse NLI [Poliak et. al., 2018]

- Partial input baselines. E.g. SWAG [Zellers et. al., 2018], DROP [Dua et. al., 2019], Diverse NLI [Poliak et. al., 2018]
- Alternatives to human elicitation for building datasets?

- Partial input baselines. E.g. SWAG [Zellers et. al., 2018], DROP [Dua et. al., 2019], Diverse NLI [Poliak et. al., 2018]
- Alternatives to human elicitation for building datasets?

In conclusion : It's an exciting time for NLP!

In conclusion : It's an exciting time for NLP!

The New York Times

Finally, a Machine That Can Finish Your Sentence

Completing someone else's thought is not an easy trick for A.I. But new systems are starting to crack the code of natural language.

In conclusion -Learning Challenges

Part I

Can linguistic structure act as an informative prior to improve our models?

Predicted structure can help representation learning.

Part II

What in our data is causing models to achieve high performance?

Need models robust to artifacts.

Thanks!

