
Addressing Biases in Datasets and Models                                                                  Microsoft | Swabha Swayamdipta

Responsible AI:  
Addressing Biases 

 in Datasets and Models
Swabha Swayamdipta 

Postdoctoral Investigator, Allen Institute for AI 
Nov 2nd, 2020



Addressing Biases in Datasets and Models                                                                  Microsoft | Swabha Swayamdipta

Responsible AI:  
Addressing Biases 

 in Datasets and Models
Swabha Swayamdipta 

Postdoctoral Investigator, Allen Institute for AI 
Nov 2nd, 2020



Addressing Biases in Datasets and Models                                                                  Microsoft | Swabha Swayamdipta

�2



Addressing Biases in Datasets and Models                                                                  Microsoft | Swabha Swayamdipta

�2

Automated 

Assista
ntsAutomated 

Assista
nts



Addressing Biases in Datasets and Models                                                                  Microsoft | Swabha Swayamdipta

�2

Automated 

Assista
ntsAutomated 

Assista
nts

Machine 

Translator



Addressing Biases in Datasets and Models                                                                  Microsoft | Swabha Swayamdipta

�2

Automated 

Assista
ntsAutomated 

Assista
nts

Machine 

Translator

Recommender 

Systerms



Addressing Biases in Datasets and Models                                                                  Microsoft | Swabha Swayamdipta

�2

Automated 

Assista
ntsAutomated 

Assista
nts

Machine 

Translator
Social  

Media

Recommender 

Systerms



Addressing Biases in Datasets and Models                                                                  Microsoft | Swabha Swayamdipta

�2

Automated 

Assista
ntsAutomated 

Assista
nts

Machine 

Translator
Social  

Media

Recommender 

Systerms

Medical 

Imaging



Addressing Biases in Datasets and Models                                                                  Microsoft | Swabha Swayamdipta

�2

Automated 

Assista
ntsAutomated 

Assista
nts

Machine 

Translator
Social  

Media

Recommender 

Systerms

Medical 

Imaging

Self-Driving 

Cars



Addressing Biases in Datasets and Models                                                                  Microsoft | Swabha Swayamdipta

�3



Addressing Biases in Datasets and Models                                                                  Microsoft | Swabha Swayamdipta

�4



Addressing Biases in Datasets and Models                                                                  Microsoft | Swabha Swayamdipta

�4 Example from Beery et al. [2019]

https://beerys.github.io/assets/papers/recognition-terra-incognita.pdf


Addressing Biases in Datasets and Models                                                                  Microsoft | Swabha Swayamdipta

�4

Cow

Example from Beery et al. [2019]

https://beerys.github.io/assets/papers/recognition-terra-incognita.pdf


Addressing Biases in Datasets and Models                                                                  Microsoft | Swabha Swayamdipta

�4

Cow

Cow

Example from Beery et al. [2019]

Cow

https://beerys.github.io/assets/papers/recognition-terra-incognita.pdf


Addressing Biases in Datasets and Models                                                                  Microsoft | Swabha Swayamdipta

�4

Cow

Cow

Example from Beery et al. [2019]

Cow

https://beerys.github.io/assets/papers/recognition-terra-incognita.pdf


Addressing Biases in Datasets and Models                                                                  Microsoft | Swabha Swayamdipta

�4

Cow

Cow

Example from Beery et al. [2019]

Cow No Person No Person

https://beerys.github.io/assets/papers/recognition-terra-incognita.pdf


Addressing Biases in Datasets and Models                                                                  Microsoft | Swabha Swayamdipta

�5
Google Inclusive Images Competition

Wedding

https://ai.googleblog.com/2018/09/introducing-inclusive-images-competition.html


Addressing Biases in Datasets and Models                                                                  Microsoft | Swabha Swayamdipta

�5
Google Inclusive Images Competition

Wedding

https://ai.googleblog.com/2018/09/introducing-inclusive-images-competition.html


Addressing Biases in Datasets and Models                                                                  Microsoft | Swabha Swayamdipta

�6

Car
Car



Addressing Biases in Datasets and Models                                                                  Microsoft | Swabha Swayamdipta

�6

Car with 
stickers

Car
Car

Example courtesy @hardmaru [2019]



Addressing Biases in Datasets and Models                                                                  Microsoft | Swabha Swayamdipta

�6

Car with 
stickers

0

12.5

25

37.5

50

Flamingo
Griffon

Photocopier Cart
Fungus

Car
Car

Example courtesy @hardmaru [2019]



Addressing Biases in Datasets and Models                                                                  Microsoft | Swabha Swayamdipta

�7

Flamingo

Self-Driving 

Cars



Addressing Biases in Datasets and Models                                                                  Microsoft | Swabha Swayamdipta

�7

Why does AI, so successful in many applications, 
still make embarrassing mistakes?

? ?

?

Flamingo

Self-Driving 

Cars



Addressing Biases in Datasets and Models                                                                  Microsoft | Swabha Swayamdipta

The AI 
Pipeline

�8



Addressing Biases in Datasets and Models                                                                  Microsoft | Swabha Swayamdipta

The AI 
Pipeline

�8

Raw Data



Addressing Biases in Datasets and Models                                                                  Microsoft | Swabha Swayamdipta

The AI 
Pipeline

�8

Raw Data

Human Labeling



Addressing Biases in Datasets and Models                                                                  Microsoft | Swabha Swayamdipta

The AI 
Pipeline

�8

Raw Data

Human Labeling Training



Addressing Biases in Datasets and Models                                                                  Microsoft | Swabha Swayamdipta

The AI 
Pipeline

�8

Raw Data

Human Labeling Training

Evaluation



Addressing Biases in Datasets and Models                                                                  Microsoft | Swabha Swayamdipta

The AI 
Pipeline

�8

Raw Data

Human Labeling Training

Evaluation

Deployment



Addressing Biases in Datasets and Models                                                                  Microsoft | Swabha Swayamdipta

The AI 
Pipeline

�8

Raw Data

Human Labeling Training

Evaluation

Deployment

Bias!



Addressing Biases in Datasets and Models                                                                  Microsoft | Swabha Swayamdipta

The AI 
Pipeline

�8

Raw Data

Human Labeling Training

Evaluation

Deployment

Bias!

Bias!



Addressing Biases in Datasets and Models                                                                  Microsoft | Swabha Swayamdipta

The AI 
Pipeline

�8

Raw Data

Human Labeling Training

Evaluation

Deployment

Bias!

Bias!

Bias!



Addressing Biases in Datasets and Models                                                                  Microsoft | Swabha Swayamdipta

The AI 
Pipeline

�8

Raw Data

Human Labeling Training

Evaluation

Deployment

Bias!

Bias!

Bias!
Bias!



Addressing Biases in Datasets and Models                                                                  Microsoft | Swabha Swayamdipta

The AI 
Pipeline

�8

Raw Data

Human Labeling Training

Evaluation

Deployment

Bias!

Bias!

Bias!

Bias!
Bias!

Bias!

Bias!

Bias!



Addressing Biases in Datasets and Models                                                                  Microsoft | Swabha Swayamdipta

This Talk

�9



Addressing Biases in Datasets and Models                                                                  Microsoft | Swabha Swayamdipta

This Talk

Biases in the AI pipeline 

•Dataset biases 

•Model (Algorithmic) Biases 

�9



Addressing Biases in Datasets and Models                                                                  Microsoft | Swabha Swayamdipta

This Talk

Biases in the AI pipeline 

•Dataset biases 

•Model (Algorithmic) Biases 

�9

Addressing Biases 

•Filtering data 

•Altering models 

•Limitations



Addressing Biases in Datasets and Models                                                                  Microsoft | Swabha Swayamdipta

This Talk

Biases in the AI pipeline 

•Dataset biases 

•Model (Algorithmic) Biases 

�9

Addressing Biases 

•Filtering data 

•Altering models 

•Limitations

Towards Responsible AI 

•Educate 

•Explain 

•Contextualize



Addressing Biases in Datasets and Models                                                                  Microsoft | Swabha Swayamdipta

This Talk

Biases in the AI pipeline 

•Dataset biases 

•Model (Algorithmic) Biases 

�9

Addressing Biases 

•Filtering data 

•Altering models 

•Limitations

Towards Responsible AI 

•Educate 

•Explain 

•Contextualize



Addressing Biases in Datasets and Models                                                                  Microsoft | Swabha Swayamdipta

What is Bias?

�10



Addressing Biases in Datasets and Models                                                                  Microsoft | Swabha Swayamdipta

What is Bias?
•Preference of one decision over another

�10



Addressing Biases in Datasets and Models                                                                  Microsoft | Swabha Swayamdipta

What is Bias?
•Preference of one decision over another

�10



Addressing Biases in Datasets and Models                                                                  Microsoft | Swabha Swayamdipta

What is Bias?
•Preference of one decision over another

�10



Addressing Biases in Datasets and Models                                                                  Microsoft | Swabha Swayamdipta

What is Bias?
•Preference of one decision over another

�10

Human biases are 
reflected in datasets

Raw Data
Human Labeling



Addressing Biases in Datasets and Models                                                                  Microsoft | Swabha Swayamdipta

What is Bias?
•Preference of one decision over another

�10

Human biases are 
reflected in datasets

Model biases are reflected 
in AI decisions

Training
Raw Data

Human Labeling



Addressing Biases in Datasets and Models                                                                  Microsoft | Swabha Swayamdipta

What is Bias?
•Preference of one decision over another

�10

Human biases are 
reflected in datasets

Model biases are reflected 
in AI decisions

Training

Evaluation

Raw Data
Human Labeling



Addressing Biases in Datasets and Models                                                                  Microsoft | Swabha Swayamdipta

Human Biases in Raw Data

�11

Raw Data
Bias!



Addressing Biases in Datasets and Models                                                                  Microsoft | Swabha Swayamdipta

Human Biases in Raw Data

�11

Raw Data
Bias!



Addressing Biases in Datasets and Models                                                                  Microsoft | Swabha Swayamdipta

Human Biases in Raw Data

�11

Raw Data
Bias!

Trained on



Addressing Biases in Datasets and Models                                                                  Microsoft | Swabha Swayamdipta

Human Biases in Raw Data

�11

•The Donald 

•Breitbart News Raw Data
Bias!

Trained on



Addressing Biases in Datasets and Models                                                                  Microsoft | Swabha Swayamdipta

Human Biases in Raw Data

�11

•The Donald 

•Breitbart News

RealToxicityPrompts [Gehman et al., 2020]

Raw Data
Bias!

Trained on

https://arxiv.org/pdf/2009.11462.pdf
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Example from the Flickr30k Dataset

Credit: van Miltenburg [2016] & Paullada A. [2020] Using Datasets Wisely 

A blond girl and a bald man with his arms crossed 
are standing inside looking at each other. 

A worker is being scolded by her boss 
in a stern lecture.

Sonic employees talking about work. 

A hot, blond girl getting criticized by her boss.

A manager talks to an employee about job performance.

Bias!
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�13 Source: Bias in the Vision and Language of Artificial Intelligence, Mitchell 2019
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https://www.youtube.com/watch?v=XR8YSRcuVLE
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Linguistic structure provides a 

prior for understanding language 

and reasoning.

Syntactic Inductive Biases in NLP [Swayamdipta, 2019, PhD Thesis]

https://www.lti.cs.cmu.edu/people/18088/swabha-swayamdipta
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A cat is not a dog

Inductive Biases

https://en.wikipedia.org/wiki/Correlation_does_not_imply_causation
https://web.archive.org/web/20190925212058/http://www.burns.com/wcbspurcorl.htm
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Gender Shades [Buolamwini & Gebru, 2018]

RealToxicityPrompts [Gehman et. al, 2020]

Social Biases

 [Birhane & Guest, 2020]
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•Human moderation does not scale 

•Spurred a great deal of research on automatic 
detection of hate speech

Some examples might contain 
offensive or triggering content

Hate Speech in 
Online Platforms
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Adversarial Filters of Dataset Biases [L., Swayamdipta, Z., B., P., S., C., 2020]

•What instances to filter?

•Key intuition: Examples which are relatively easy for a model might 
contain spurious correlations

•Easy examples can be detected:

•By simple model architectures 

•Early in the training process

Dataset Cartography [Swayamdipta et al., 2020]

https://arxiv.org/abs/2002.04108
https://arxiv.org/abs/2009.10795
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Data Maps

�27 Dataset Cartography [Swayamdipta et. al, 2020]

Good luck and let's join hands 
to form unity. 

Sc**w you Trump supporters! 

All the flashbacks.. and all the 
memories. It really f*ing hurts...

POTUS lives rent free in the angry 
heads of twitting tw*ts..

https://arxiv.org/abs/2009.10795
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Bias mitigation strategies are effective 

to only a limited extent, neither 

approach completely eradicates biases
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Educating AI: Raw Data

•Curate data with care

•Sampling Biases. e.g. data containing only 
white / majority populations

•Dynamic Datasets and Benchmarks

•Periodic Iterations on Data and Annotations

•e.g. Dynabench
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Educating AI: Human Labeling

•Annotator Training to avoid inconsistencies 
(recall bias)

•Avoid stereotyping biases

•Whose voice matters? 

•Reannotation using a diverse annotator 
pool / the most affected users

�36 Whose perspective is it anyway? [R., P., B., G., Swayamdipta - In Prep]
A democratized view of toxic language [V., S., Z., Swayamdipta - In Prep]
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•How to learn? ITERATE!

•e.g. Removing Gender Bias from 
Word Embeddings

•e.g. AFLite
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Explanations for evaluating AI
•AI is notorious for being a black box: we cannot 

simply take an AI decision for granted

•Behavioral Testing 

•Examining model internals

•Biases in models can be exposed through 
explainability

•Important for building trust (Jacovi et al. 2020)

�39
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•Instead: Situate the AI decisions in the perspective of 
expected dataset / model biases [Waseem et al., 2020]

•Should I trust a decision knowing where it might be coming 
from?

•Datasheets for Datasets [Gebru et al., 2018]

•Model Cards for Model Reporting [Zaldivar et al., 2019]
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•Educate AI

•Evaluate AI via Explanations

•Contextualize AI Decisions

•Keep the broader picture in mind: What you do 
matters!
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•Altering models 

•Limitations

Towards Responsible AI 

•Educate 

•Explain 

•Contextualize
Data and models may contain 

different kinds of biases

Biases can be extremely tricky 
to remove

As the force behind AI, we can 
really make a difference
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