The Devil's in the Data

Mapping and Generating Datasets for Robust Generalization

Swabha Swayamdipta
Incoming Asst. Prof, USC CS
Postdoc, Allen Institute for AI
23rd May, 2022

Moore's Law for Everything

by Sam Altman

Moore's Law for Everything

by Sam Altman

Natural Language Inference

Given a premise, is a hypothesis true, false or neither?

Natural Language Inference

Given a premise, is a hypothesis true, false or neither?

```
Premise
A dog is chasing birds on the
    shore of the ocean.
```


Natural Language Inference

Given a premise, is a hypothesis true, false or neither?

Natural Language Inference

Given a premise, is a hypothesis true, false or neither?

Natural Language Inference

Given a premise, is a hypothesis true, false or neither?

Natural Language Inference

Given a premise, is a hypothesis true, false or neither?

A dog is chasing birds on the shore of the ocean.

The birds are being
Hypothesis
chased by a cat.

Stanford NLI [Bowman et al., 2015]
$\sim 0.5 \mathrm{~m}$ instances

MultiNLI [Williams et al., 2018]
$\sim 0.4 \mathrm{~m}$ instances

OTrue
(False
O Cannot Say \rightarrow Neutral

MultiNLI leaderboard results from paperswithcode.com [March 2022]

MultiNLI leaderboard results from paperswithcode.com [March 2022]

contradiction

contradiction

Neutral

RoBERTa-Large [Liu et al. 2019]
Trained on MultiNLI + SNLI

contradiction

Contradiction

Neutral

Contradiction

People are reading, and the cat is napping on the couch.

The cat is not reading on the couch.

Entailment

Contradiction

RoBERTa-Large [Liu et al. 2019]
Trained on MultiNLI + SNLI

contradiction

Neutral

Contradiction

People are reading, and the cat is napping on the couch.

The cat is not reading on the couch.

Entailment

Contradiction

RoBERTa-Large [Liu et al. 2019]
Trained on MultiNLI + SNLI

RoBERTa-Large [Liu et al. 2019]

Trained on SNLI + MultiNLI

??
??
??

RoBERTa-Large [Liu et al. 2019]

Trained on SNLI + MultiNLI

??

Contradiction
??

Contradiction
??

Contradiction

RoBERTa-Large [Liu et al. 2019]

Trained on SNLI + MultiNLI

How can we better analyze the model-data relationship?

Model Training Dynamics

Model Training Dynamics

Model Training Dynamics

$$
\hat{\mu}_{i}=\frac{1}{E} \sum_{e=1}^{E} p_{\theta^{(e)}}\left(y_{i}^{*} \mid x_{i}\right)
$$

confidence

Mean
probability
of the true class

Model Training Dynamics

$$
\hat{\mu}_{i}=\frac{1}{E} \sum_{e=1}^{E} p_{\theta^{(e)}}\left(y_{i}^{*} \mid x_{i}\right)
$$

confidence

Mean

probability
of the true
class

$$
\hat{\sigma}_{i}=\sqrt{\frac{\sum_{e=1}^{E}\left(p_{\theta^{(e)}}\left(y_{i}^{*} \mid x_{i}\right)-\hat{\mu}_{i}\right)^{2}}{E}} \quad \begin{gathered}
\text { Standard deviation of the } \\
\text { true class probability }
\end{gathered}
$$

Model Training Dynamics

$$
\hat{\mu}_{i}=\frac{1}{E} \sum_{e=1}^{E} p_{\theta^{(e)}}\left(y_{i}^{*} \mid x_{i}\right)
$$

confidence

Mean

probability
of the true class

correctness

- 0.0
* 0.2
- 0.3
- 0.5
- 0.7
$\triangle \quad 0.8$
- 1.0

Ratio at
which
model prediction
matches
true class

$$
\hat{c}_{i}=\frac{1}{E} \sum_{e=1}^{E} 1\left[y_{i}^{*}=\arg \max _{y} p_{\theta^{(e)}}\left(y \mid x_{i}\right)\right]
$$

$$
\hat{\sigma}_{i}=\sqrt{\frac{\sum_{e=1}^{E}\left(p_{\theta^{(c)}}\left(y_{i}^{*} \mid x_{i}\right)-\hat{\mu}_{i}\right)^{2}}{E}} \quad \begin{gathered}
\text { Standard deviation of the } \\
\text { true class probability }
\end{gathered}
$$

Original (100\% Train)
Random (33\%)
Ambiguous (33\%) SNLI Test

 In-Distribution Performance

Diagnostics [Wang et al., 2019]

Original (100\% Train)
Random (33\%)
Ambiguous (33\%) SNLI Test

Diagnostics [Wang et al., 2019]

Out-of-Distribution Performance

SNLI-RoBERTa Data Map

SNLI-RoBERTa Data Map

An expression gathered there that I can only describe as half puzzled, and half relieved.

The expression on their face was puzzled and relieved.

SNLI-RoBERTa Data Map

An expression gathered there that I can only describe as half puzzled, and half relieved.

The expression on their face was puzzled and relieved.

Neutral

Not all training instances contribute equally to model learning

AAlso see

Understanding Dataset Difficulty with \mathscr{V}-Usable Information
[Ethayarajh, Choi \& Swayamdipta, ICML 2022]

Can we leverage data maps to improve dataset collection?

Might introduce heuristics leading to annotation artifacts

Can be easily modified for diverse generations

MultiNLI-RoBERTa Data Map

GPT-3

MultiNLI-RoBERTa Data Map

GPT-3

GPT-3 \qquad

GPT-3 \qquad

About 1,000 people are diagnosed with chronic myeloid leukemia each year. Implication: About 9,000 people are not diagnosed with chronic myeloid leukemia each year.

About 1,000 people are diagnosed with chronic myeloid leukemia each year. Implication: About $\mathbf{9 , 0 0 0}$ people are not diagnosed with chronic myeloid leukemia each year.

He has never smoked, and he doesn't drink. Implication: He has smoked and he has drank.

1 percent of the seats were vacant.
Implication: 99 percent of the seats were occupied.

About 1,000 people are diagnosed with chronic myeloid leukemia each year. Implication: About 9,000 people are not diagnosed with chronic myeloid leukemia each year.

About 1,000 people are diagnosed with chronic myeloid leukemia each year. Implication: About 9,000 people are not diagnosed with chronic myeloid leukemia each year.
$\left.\begin{array}{l}\text { instruction } \\ \text { nearest neighbors to } \\ \text { seed example } \\ \text { seed ambiguous example MultiNLI - RoBERTa }\end{array}\right\}$

\section*{Also see

Reframing Human-Al for Generating Free-Text Explanations
[Wiegreffe, Hessel, Swayamdipta, Riedel \& Choi, NAACL 2022]

About 1,000 people are diagnosed with chronic myeloid leukemia each year.
Implication: About $\mathbf{9 , 0 0 0}$ people are not diagnosed with chronic myeloid leukemia each year. -

1 percent of the seats were vacant.

Implication: 99 percent of the seats were occupied.

GPT-3

About 1,000 people are diagnosed with chronic myeloid leukemia each year.
Implication: About 9,000 people are not diagnosed with chronic myeloid leukemia each year.

He has never smoked, and he doesn't drink.
Implication: He has smoked and he has drank.
Filter
1 percent of the seats were vacant.
Implication: 99 percent of the seats were occupied.

GPT-3

About 1,000 people are diagnosed with chronic myeloid leukemia each year.
Implication: About 9,000 people are not diagnosed with chronic myeloid leukemia each year.

He has never smoked, and he doesn't drink.
Implication: He has smoked and he has drank.
Filter
1 percent of the seats were vacant.
Implication: 99 percent of the seats were occupied.

Worker-AI Collaborative NLI: WANLI

万理

Ten thousand reasoning

Worker-AI Collaborative NLI: WANLI

WaNLI Data Size

Worker-AI Collaborative NLI: WANLI

WaNLI Data Size

RoBERTa-Large models

RoBERTa-Large models

RoBERTa-Large models

RoBERTa-Large models

Please see paper for more comparisons
WANLI [Liu., Swayamdipta, Smith and Choi, ArXiV 2022]

MultiNLI-RoBERTa

MultiNLI-RoBERTa

WANLI-RoBERTa

A dog and cat are snuggling up during a nap.

Dogs and cats rarely, if ever, snuggle.

Neutral Contradiction

Neutral
Neutral

As a result of the disaster, the city was rebuilt and it is now one of the most beautiful cities in the world.

WANLI Hypothesis A disaster made the city better.

As a result of the disaster, the city was rebuilt and it is now one of the most beautiful cities in the world.

WANLI Hypothesis
A disaster made the city better.

Entailment
Also see
6
[Pavlick \& Kwiatkowski, 2019; Chen et al., 2020; Zhou et al., 2022; Davani et al., 2021]

Mapping large datasets to discover regions which are challenging to models

Mapping large datasets to discover regions which are challenging to models

GPT-3

Generating new challenging instances via a collaboration of humans and models

GPT-3

Generating new challenging instances via a collaboration of humans and models

Rethinking data by shifting the focus to data quality over quantity

WANLI

Cartography

