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Is data scale really the key to generalization?
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A dog is chasing birds on the 
shore of the ocean.

The birds are being 
chased by a cat.

 True               → Entailment 

 False              → Contradiction 

 Cannot Say    → Neutral

Stanford NLI [Bowman et al., 2015] 
~0.5m instances

Given a premise, is a hypothesis true, false or neither?

Premise

MultiNLI [Williams et al., 2018] 
~0.4m instances

Hypothesis

Semantic Theory [Katz, 1972]
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Contradiction Contradiction Contradiction

?? ????

-

Dogs and cats rarely, if 
ever, snuggle.

The cat is not reading 
on the couch.

-Premise

Hypothesis

-

The birds are being 
chased by a cat.

Annotation Artifacts in NLI [G*., Swayamdipta*, L., S., B., S., NAACL 2018]

“Cat” Instances

54%

12%

34%

Neutral Entailment ContradictionState-of-the-art NLP models still succumb to spurious biases in data



How can we better analyze 
the model-data relationship?
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ambiguous

Not all training instances contribute equally to model learning

Understanding Dataset Difficulty 
with 𝒱-Usable Information 

[Ethayarajh, Choi & Swayamdipta, 
ICML 2022]

Also see
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Can we leverage data maps 
to improve dataset collection?
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G-DAUG: Generative Data Augmentation for Commonsense Reasoning 
[Y. M., F., Swayamdipta, L., W., B., C., D EMNLP-findings, 2020]

Can be easily 
modified for 
diverse generations

GPT-3

Also see

[Schick & Schütze, 2021; Meng et al. 2022; West et al., 2021; Lee et 
al., 2021; Bartolo et al., 2021]
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Reframing Human-AI for Generating Free-Text Explanations 
[Wiegreffe, Hessel, Swayamdipta, Riedel & Choi, NAACL 2022]

Also see
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Labels?

Reliable and trustworthy!
Entailment

Entailment
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Worker-AI Collaborative NLI: WANLI
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Worker-AI Collaborative NLI: WANLI
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RoBERTa-Large models
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∂WANLI leads to better OOD generalization, despite being 4x smaller than MultiNLI!

Please see paper for more comparisons
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MultiNLI-RoBERTa

Contradiction Contradiction Contradiction

Contradiction EntailmentNeutral

A dog and cat are snuggling 
up during a nap.

Dogs and cats rarely, if 
ever, snuggle.

The cat is not reading 
on the couch.

People are reading, and the 
cat is napping on the couch.

Premise

Hypothesis

A dog is chasing birds on the 
shore of the ocean.

The birds are being 
chased by a cat.
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WANLI avoids known lexical artifacts prevalent in the original dataset, MultiNLI
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As a result of the disaster, the city was rebuilt and it is now one 
of the most beautiful cities in the world.

A disaster made the city better.

WANLI Premise

WANLI Hypothesis
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As a result of the disaster, the city was rebuilt and it is now one 
of the most beautiful cities in the world.

A disaster made the city better.

Neutral Contradiction Entailment

WANLI Premise

WANLI Hypothesis

[Pavlick & Kwiatkowski, 2019; Chen et al., 2020; Zhou et al., 2022; Davani et al., 2021]

Also see
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Rethinking data by shifting the focus to data quality over quantity

GPT-3

Noah A. 
Smith

Yejin  
Choi

Alisa  
Liu

Roy  
Schwartz

Yizhong  
Wang

Nicholas  
Lourie

Hannaneh 
Hajishirzi

WANLI

Cartography


