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Dependency Parsing

TurboParser output from
http://demo.ark.cs.cmu.edu/parse?sentence=I%20ate%20the%20fish%20with%20a%20fork.

http://demo.ark.cs.cmu.edu/parse?sentence=I%20ate%20the%20fish%20with%20a%20fork.


Dependency Parsing - Output Structure

A parse is an arborescence (aka directed rooted tree):

I Directed [Labeled] Graph

I Acyclic

I Single Root

I Connected and Spanning: ∃ directed path from root to every
other word



Arc-Factored Model

Every possible labeled directed edge e between every pair of nodes
gets a score, score(e).

G = 〈V ,E 〉 =

(O(n2) edges)

Example from Non-projective Dependency Parsing using Spanning Tree Algorithms McDonald et al., EMNLP ’05
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Arc-Factored Model

Best parse is:

A(1) = arg max
A⊆G

s.t. A an arborescence

∑
e∈A

score(e)

The Chu-Liu-Edmonds algorithm finds this argmax.
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Projective / Non-projective

I Some parses are projective: edges don’t cross

I Most English sentences are projective, but non-projectivity is
common in other languages (e.g. Czech, Hindi)

Non-projective sentence in English:

and Czech:

Examples from Non-projective Dependency Parsing using Spanning Tree Algorithms McDonald et al., EMNLP ’05



Dependency Parsing Approaches

I Chart (Eisner, CKY)
I Only produces projective parses
I O(n3)

I Shift-reduce
I “Pseudo-projective” trick can capture some non-projectivity
I O(n) (fast!), but inexact

I Graph-based (MST)
I Can produce projective and non-projective parses
I O(n2) for arc-factored
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Chu-Liu-Edmonds

Chu and Liu ’65, On the Shortest Arborescence of a Directed Graph, Science
Sinica

Edmonds ’67, Optimum Branchings, JRNBS



Chu-Liu-Edmonds - Intuition

Every non-ROOT node needs exactly 1 incoming edge

In fact, every connected component needs exactly 1 incoming edge

I Greedily pick an incoming edge for each node.

I If this forms an arborescence, great!

I Otherwise, it will contain a cycle C .

I Arborescences can’t have cycles, so we can’t keep every edge
in C . One edge in C must get kicked out.

I C also needs an incoming edge.

I Choosing an incoming edge for C determines which edge to
kick out
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Chu-Liu-Edmonds

Consists of two stages:

I Contracting

I Expanding



Chu-Liu-Edmonds - Contracting Stage

I For each non-ROOT node v , set bestInEdge[v ] to be its
highest scoring incoming edge.

I If a cycle C is ever formed:
I contract the nodes in C into a new node vC
I edges incoming to any node in C now get destination vC
I edges outgoing from any node in C now get source vC
I For each node u in C , and for each edge e incoming to u from

outside of C :
I add bestInEdge[u] to kicksOut[e], and
I set the score of e to be score[e]− score[bestInEdge[u]].

I Repeat until every non-ROOT node has an incoming edge and
no cycles are formed



An Example - Contracting Stage

V1

ROOT

V3V2

a : 5 b : 1 c : 1

f : 5d : 11

h : 9

e : 4

i : 8g : 10

bestInEdge

V1
V2
V3

kicksOut
a
b
c
d
e
f
g
h
i
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An Example - Contracting Stage

V1

ROOT

V3V2

a : 5− 10 b : 1− 11 c : 1

f : 5d : 11

h : 9− 10

e : 4

i : 8− 11g : 10

V4

bestInEdge

V1 g
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c
d
e
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An Example - Contracting Stage

V4

ROOT

V3
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An Example - Contracting Stage

V5

ROOT

b : −9

a : −4 c : −4

bestInEdge

V1 g
V2 d
V3 f
V4 h
V5 a

kicksOut

a g, h
b d, h
c f
d
e f
f
g
h g
i d



Chu-Liu-Edmonds - Expanding Stage

After the contracting stage, every contracted node will have
exactly one bestInEdge. This edge will kick out one edge inside
the contracted node, breaking the cycle.

I Go through each bestInEdge e in the reverse order that we
added them

I lock down e, and remove every edge in kicksOut(e) from
bestInEdge.
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Chu-Liu-Edmonds - Recursive Definition

def Get1Best(〈V , E〉, ROOT ):
””” returns best arborescence as a map from each node to its parent ”””
for v in V \ ROOT:

bestInEdge[v ]← arg maxu∈V score[(u, v)]

if bestInEdge contains a cycle C :
# build a new graph in which C is contracted into a single node
vC ← new Node

V ′ ← V ∪ {vC} \ C
E ′ ← ∅
for e = (t, u) in E :

if t 6∈ C and u 6∈ C :
e′ ← e

elif t ∈ C and u 6∈ C :
e′ ← new Edge (vC , u)

score[e′]← score[e]

elif u ∈ C and t 6∈ C :
e′ ← new Edge (t, vC )

kicksOut[e′]← bestInEdge[u]

score[e′]← score[e]− score[kicksOut[e′]]

real[e′]← e # remember the original

E ′ ← E ′ ∪ {e′}
A← Get1Best(〈V ′, E ′〉, ROOT )
return {real[e′] | e′ ∈ A} ∪ (CE \ {kicksOut[A[vC ]]})

return bestInEdge



Chu-Liu-Edmonds - Notes

I Efficient implementation:
Tarjan ’77, Finding Optimum Branchings, Networks

Not recursive. Uses a union-find (a.k.a. disjoint-set) data
structure to keep track of collapsed nodes.

I Even more efficient:
Gabow et al. ’86, Efficient Algorithms for Finding Minimum Spanning

Trees in Undirected and Directed Graphs, Combinatorica

Uses a Fibonacci heap to keep incoming edges sorted.
Describes how to constrain ROOT to have only one outgoing
edge

I There is a version where you don’t have to specify ROOT
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Camerini



The Goal

Find exact k-best parses of a sentence given the weights of the
graph

But why?

I Model might not be correct, rerank k-best parses

I Constrained models (think global features)
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State of the art

I MSTParser and MaltParser produce an approximate k-best list

I TurboParser has no k-best feature



Central Idea

1. We know how to get A(1), the 1-best arborescence.

2. There is at least one edge in A(1), which should not be in the
2nd best arborescence.

3. Let us call this maximum impact edge, say e.
We have an algorithm to find e.

4. Now consider two possibilities:
I e is banned (this includes the 2nd best solution)
I e is required (this includes the 1st best solution, A)

5. Partition the whole search space into two smaller subspaces.

Partition the solution space

Let reqd = set of edges that must be included
and banned = set of edges that must be excluded.
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Outline of the rest of the talk

I Find best arborescence A s.t. reqd ⊆ A ⊆ E \ banned
Algorithm GetConstrained1Best(G, ROOT, reqd, banned)

I Find an edge e ∈ A \ reqd that defines the next partition.
Algorithm FindEdgeToBan(G, ROOT,A, reqd, banned)

I Smart way to search the subspace of solutions
Algorithm GetKBest(G, ROOT, k)



Algorithm GetConstrained1Best(G, ROOT, reqd, banned)

Throw out edges before you feed the graph into Get1Best:

I Throw out every edge in banned

I Throw out every edge that competes with any edge in reqd

I Run Get1Best

Runtime
O(n2)
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Algorithm FindEdgeToBan(G, ROOT,A, reqd, banned)

I Input (A, reqd, banned),
I For every edge e in A \ reqd, find the next best alternative

edge, alt(e)
I this alternative cannot be in banned
I the source of this alternative must not be lower down in the

tree A

I Return eBan, the edge e in A \ reqd with the highest scoring
alternative

I Return diff = score(eBan)− alt(eBan)

Return variables eBan, diff

Runtime
O(n2)



Example run FindEdgeToBan

FindEdgeToBan(G, ROOT,A(1), reqd = ∅, banned = ∅)
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V2 V3
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f : 5d : 11

h : 9
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i : 8g : 10

diff = +∞, eBan = ∅
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diff = +∞, eBan = ∅



Example run FindEdgeToBan

FindEdgeToBan(G, ROOT,A(1), reqd = ∅, banned = ∅)

V1

ROOT

V2 V3

a : 5 b : 1 c : 1

f : 5d : 11

h : 9

e : 4

i : 8g : 10

alt(d) = b

diff = 10, eBan = d



Example run FindEdgeToBan

FindEdgeToBan(G, ROOT,A(1), reqd = ∅, banned = ∅)

V1

ROOT

V2 V3

a : 5 b : 1 c : 1

f : 5d : 11

h : 9

e : 4

i : 8g : 10

V4

alt(d) = b

diff = 10, eBan = d



Example run FindEdgeToBan

FindEdgeToBan(G, ROOT,A(1), reqd = ∅, banned = ∅)

V4

ROOT

V3

b : −10 c : 1

f : 5

a : −5

h : −1

e : 4

i : −3

alt(d) = b

diff = 10, eBan = d



Example run FindEdgeToBan

FindEdgeToBan(G, ROOT,A(1), reqd = ∅, banned = ∅)

V4

ROOT

V3

b : −10 c : 1

f : 5

a : −5

h : −1

e : 4

i : −3

alt(d) = b

diff = 10, eBan = d



Example run FindEdgeToBan

FindEdgeToBan(G, ROOT,A(1), reqd = ∅, banned = ∅)

V4

ROOT

V3

b : −10 c : 1

f : 5

a : −5

h : −1

e : 4

i : −3

alt(f ) = e

diff = 1, eBan = f



Example run FindEdgeToBan

FindEdgeToBan(G, ROOT,A(1), reqd = ∅, banned = ∅)

V4

ROOT

V3

b : −10 c : 1

f : 5

a : −5

h : −1

e : 4

i : −3

alt(f ) = e

diff = 1, eBan = f



Example run FindEdgeToBan

FindEdgeToBan(G, ROOT,A(1), reqd = ∅, banned = ∅)

V4

ROOT

V3

b : −10 c : 1

f : 5

a : −5

h : −1

e : 4

i : −3

V5

alt(f ) = e

diff = 1, eBan = f



Example run FindEdgeToBan

FindEdgeToBan(G, ROOT,A(1), reqd = ∅, banned = ∅)

V5

ROOT

b : −9

a : −4 c : −4

alt(f ) = e

diff = 1, eBan = f



Example run FindEdgeToBan

FindEdgeToBan(G, ROOT,A(1), reqd = ∅, banned = ∅)

V5

ROOT

b : −9

a : −4 c : −4

alt(a) = c

diff = 0, eBan = a



Example run FindEdgeToBan

FindEdgeToBan(G, ROOT,A(1), reqd = ∅, banned = ∅)

V5

ROOT

b : −9

a : −4 c : −4

alt(a) = c

diff = 0, eBan = a



Outline of the rest of the talk

I Find best arborescence A s.t. reqd ⊆ A ⊆ E \ banned
Algorithm GetConstrained1Best(G, ROOT, reqd, banned)

I Find an edge e ∈ A \ reqd that defines the next partition.
Algorithm FindEdgeToBan(G, ROOT,A, reqd, banned)

I Smart way to search the subspace of solutions
Algorithm GetKBest(G, ROOT, k)



Revisit partitioning

reqd = ∅
banned = ∅

reqd = ∅
banned = {e0}

reqd = {e0}
banned = ∅

reqd = ∅
banned = {e0, e1}

reqd = {e1}
banned = {e0}

reqd = {e0}
banned = {e2}

reqd = {e0, e2}
banned = ∅
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n
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Algorithm GetKBest(G, ROOT, k)

I For every partition, save the following tuple:
(wt, eBan, A, reqd, banned)

I A = GetConstrained1Best(G, ROOT, reqd, banned)
corresponds to the best solution in the partition

I diff, eBan = FindEdgeToBan(G, ROOT,A, reqd, banned)

I wt = score(A)− diff

I Maintain a priority queue, Q containing all tuples sorted by wt

I Q determines which path to traverse in the search space



GetKBest

def GetKBest(G, ROOT, k):
””” returns k-best arborescences ”””
reqd← ∅ banned← ∅
A(1) ← Get1Best(〈G.V , G.E〉, ROOT)

diff, eBan← FindEdgeToBan(G, ROOT,A(1), reqd, banned)

Q.push((score(A(1))− diff, eBan,A(1), reqd, banned))
for j in 2 . . . k:

(wt, eBan, Ā, reqd, banned)← Q.pop()
if wt== −∞:

return A(1), . . . ,A(j−1)

¯reqd← reqd ∪ {eBan}
¯banned← banned ∪ {eBan}

A(j) ← GetConstrained1Best(G, ROOT, reqd, banned′)

diff, eBan ← FindEdgeToBan(G, ROOT, Ā, ¯reqd, banned)

Q.push((score(Ā)− diff, eBan, Ā, ¯reqd, banned))

diff, eBan ← FindEdgeToBan(G, ROOT, Ā, reqd, ¯banned)

Q.push((wt− diff, eBan, Ā, reqd, ¯banned))

return A(1), . . . ,A(k)

Runtime
O(kn2)



GetKBest example : 1-best

A(1) ← GetConstrained1Best(G, ROOT, reqd = ∅, banned = ∅)

V1

ROOT

V2 V3

a : 5 b : 1 c : 1

f : 5d : 11

h : 9

e : 4

i : 8g : 10

Q



GetKBest example : 1-best

A(1) ← GetConstrained1Best(G, ROOT, reqd = ∅, banned = ∅)

V1

ROOT

V2 V3

a : 5 b : 1 c : 1

f : 5d : 11

h : 9

e : 4

i : 8g : 10

Q

(diff = 0, eBan = a)← FindEdgeToBan(G, ROOT,A(1), reqd = ∅, banned = ∅)



GetKBest example : 1-best

A(1) ← GetConstrained1Best(G, ROOT, reqd = ∅, banned = ∅)

V1

ROOT

V2 V3

a : 5 b : 1 c : 1

f : 5d : 11

h : 9

e : 4

i : 8g : 10

Q

(21, a,A(1), ∅, ∅)

(diff = 0, eBan = a)← FindEdgeToBan(G, ROOT,A(1), reqd = ∅, banned = ∅)



GetKBest example: 2-best

A(2) ← GetConstrained1Best(G, ROOT, reqd = ∅, banned = {a})

V1

ROOT

V2 V3

a : 5 b : 1 c : 1

f : 5d : 11

h : 9

e : 4

i : 8g : 10
Q

(21, a,A(1), ∅, ∅)



GetKBest example: 2-best

A(2) ← GetConstrained1Best(G, ROOT, reqd = ∅, banned = {a})

V1

ROOT

V2 V3

a : 5 b : 1 c : 1

f : 5d : 11

h : 9

e : 4

i : 8g : 10
Q

(21, a,A(1), ∅, ∅)

(diff = 1, eBan = f )← FindEdgeToBan(G, ROOT,A(1), reqd = {a}, banned = ∅)



GetKBest example: 2-best

A(2) ← GetConstrained1Best(G, ROOT, reqd = ∅, banned = {a})

V1

ROOT

V2 V3

a : 5 b : 1 c : 1

f : 5d : 11

h : 9

e : 4

i : 8g : 10
Q

(21, a,A(1), ∅, ∅)
(20, f ,A(1), {a}, ∅)

(diff = 1, eBan = f )← FindEdgeToBan(G, ROOT,A(1), reqd = {a}, banned = ∅)



GetKBest example: 2-best

A(2) ← GetConstrained1Best(G, ROOT, reqd = ∅, banned = {a})

V1

ROOT

V2 V3

a : 5 b : 1 c : 1

f : 5d : 11

h : 9

e : 4

i : 8g : 10
Q

(21, a,A(1), ∅, ∅)
(20, f ,A(1), {a}, ∅)

(diff = 1, eBan = f )← FindEdgeToBan(G, ROOT,A(1), reqd = {a}, banned = ∅)

(diff = 2, eBan = h)← FindEdgeToBan(G, ROOT,A(1), reqd = ∅, banned = {a})



GetKBest example: 2-best

A(2) ← GetConstrained1Best(G, ROOT, reqd = ∅, banned = {a})

V1

ROOT

V2 V3

a : 5 b : 1 c : 1

f : 5d : 11

h : 9

e : 4

i : 8g : 10
Q

(21, a,A(1), ∅, ∅)
(20, f ,A(1), {a}, ∅)
(19, h,A(2), ∅, {a})

(diff = 1, eBan = f )← FindEdgeToBan(G, ROOT,A(1), reqd = {a}, banned = ∅)

(diff = 2, eBan = h)← FindEdgeToBan(G, ROOT,A(1), reqd = ∅, banned = {a})



GetKBest example : 3-best

A(3) ← GetConstrained1Best(G, ROOT, reqd = {a}, banned = {f })

V1

ROOT

V2 V3

a : 5 b : 1 c : 1

f : 5d : 11

h : 9

e : 4

i : 8g : 10
Q

(21, a,A(1), ∅, ∅)
(20, f ,A(1), {a}, ∅)
(19, h,A(2), ∅, {a})



Conclusion

I Graph-based formulation for dependency parsing

I 1-best algorithm by Chu-Liu-Edmonds

I k-best algorithm by Camerini


	Introduction
	Chu-Liu-Edmonds
	Camerini
	Overview
	best
	FindEdgeToBan
	kbest

	Conclusion

