Graph-based Dependency Parsing Chu-Liu-Edmonds and Camerini (k-best)

Swabha Swayamdipta Sam Thomson

Carnegie Mellon University

November 13, 2014

Dependency Parsing

TurboParser output from
http://demo.ark.cs.cmu.edu/parse?sentence=I\ ate\ the\ fish\ with\% 20 a\% 20fork.

Dependency Parsing - Output Structure

A parse is an arborescence (aka directed rooted tree):

- Directed [Labeled] Graph
- Acyclic
- Single Root
- Connected and Spanning: \exists directed path from root to every other word

Arc-Factored Model

Every possible labeled directed edge e between every pair of nodes gets a score, score(e).

Arc-Factored Model

Every possible labeled directed edge e between every pair of nodes gets a score, score(e).
$G=\langle V, E\rangle=$

Example from Non-projective Dependency Parsing using Spanning Tree Algorithms McDonald et al., EMNLP '05

Arc-Factored Model

Best parse is:

$$
A^{(1)}=\quad \underset{A \subseteq G}{\arg \max } \quad \sum_{e \in A} \operatorname{score}(e)
$$

Example from Non-projective Dependency Parsing using Spanning Tree Algorithms McDonald et al., EMNLP '05

Arc-Factored Model

Best parse is:

Example from Non-projective Dependency Parsing using Spanning Tree Algorithms McDonald et al., EMNLP '05

Arc-Factored Model

Best parse is:

$$
A^{(1)}=\underset{\substack{A \subseteq G \\ \text { s.t. } A \text { an arborescence }}}{\arg \max } \sum_{e \in A} \operatorname{score}(e)
$$

The Chu-Liu-Edmonds algorithm finds this argmax.

Projective / Non-projective

- Some parses are projective: edges don't cross
- Most English sentences are projective, but non-projectivity is common in other languages (e.g. Czech, Hindi)

Non-projective sentence in English:

and Czech:

He is mostly not even interested in the new things and in most cases, he has no money for it either.

Dependency Parsing Approaches

- Chart (Eisner, CKY)
- Only produces projective parses
- $O\left(n^{3}\right)$

Dependency Parsing Approaches

- Chart (Eisner, CKY)
- Only produces projective parses
- $O\left(n^{3}\right)$
- Shift-reduce
- "Pseudo-projective" trick can capture some non-projectivity
- $O(n)$ (fast!), but inexact

Dependency Parsing Approaches

- Chart (Eisner, CKY)
- Only produces projective parses
- $O\left(n^{3}\right)$
- Shift-reduce
- "Pseudo-projective" trick can capture some non-projectivity
- O(n) (fast!), but inexact
- Graph-based (MST)
- Can produce projective and non-projective parses
- $O\left(n^{2}\right)$ for arc-factored

Chu-Liu-Edmonds

Chu and Liu '65, On the Shortest Arborescence of a Directed Graph, Science Sinica

Edmonds '67, Optimum Branchings, JRNBS

Chu-Liu-Edmonds - Intuition

Every non-ROOT node needs exactly 1 incoming edge

Chu-Liu-Edmonds - Intuition

Every non-ROOT node needs exactly 1 incoming edge
In fact, every connected component needs exactly 1 incoming edge

Chu-Liu-Edmonds - Intuition

Every non-ROOT node needs exactly 1 incoming edge
In fact, every connected component needs exactly 1 incoming edge

- Greedily pick an incoming edge for each node.

Chu-Liu-Edmonds - Intuition

Every non-ROOT node needs exactly 1 incoming edge
In fact, every connected component needs exactly 1 incoming edge

- Greedily pick an incoming edge for each node.
- If this forms an arborescence, great!

Chu-Liu-Edmonds - Intuition

Every non-ROOT node needs exactly 1 incoming edge
In fact, every connected component needs exactly 1 incoming edge

- Greedily pick an incoming edge for each node.
- If this forms an arborescence, great!
- Otherwise, it will contain a cycle C.

Chu-Liu-Edmonds - Intuition

Every non-ROOT node needs exactly 1 incoming edge
In fact, every connected component needs exactly 1 incoming edge

- Greedily pick an incoming edge for each node.
- If this forms an arborescence, great!
- Otherwise, it will contain a cycle C.
- Arborescences can't have cycles, so we can't keep every edge in C. One edge in C must get kicked out.

Chu-Liu-Edmonds - Intuition

Every non-ROOT node needs exactly 1 incoming edge
In fact, every connected component needs exactly 1 incoming edge

- Greedily pick an incoming edge for each node.
- If this forms an arborescence, great!
- Otherwise, it will contain a cycle C.
- Arborescences can't have cycles, so we can't keep every edge in C. One edge in C must get kicked out.
- C also needs an incoming edge.

Chu-Liu-Edmonds - Intuition

Every non-ROOT node needs exactly 1 incoming edge
In fact, every connected component needs exactly 1 incoming edge

- Greedily pick an incoming edge for each node.
- If this forms an arborescence, great!
- Otherwise, it will contain a cycle C.
- Arborescences can't have cycles, so we can't keep every edge in C. One edge in C must get kicked out.
- C also needs an incoming edge.
- Choosing an incoming edge for C determines which edge to kick out

Chu-Liu-Edmonds

Consists of two stages:

- Contracting
- Expanding

Chu-Liu-Edmonds - Contracting Stage

- For each non-ROOT node v, set bestInEdge[v] to be its highest scoring incoming edge.
- If a cycle C is ever formed:
- contract the nodes in C into a new node v_{C}
- edges incoming to any node in C now get destination v_{C}
- edges outgoing from any node in C now get source v_{C}
- For each node u in C, and for each edge e incoming to u from outside of C :
- add bestInEdge[u] to kicksOut[e], and
- set the score of e to be score[e] - score[bestInEdge[u]].
- Repeat until every non-ROOT node has an incoming edge and no cycles are formed

An Example - Contracting Stage

An Example - Contracting Stage

	bestInEdge
V1	g
V2	
V3	

	kicksOut
a	
b	
c	
d	
e	
f	
g	
h	
i	

An Example - Contracting Stage

	bestInEdge
V1	g
V2	d
V3	

	kicksOut
a	
b	
c	
d	
e	
f	
g	
h	
i	

An Example - Contracting Stage

An Example - Contracting Stage

	bestInEdge
V1	g
V2	d
V3	
V4	
a	kicks0ut
b	g
c	d
d	
e	
f	
g	
h	i

An Example - Contracting Stage

	bestInEdge
V1	g
V2	d
V3	f
V4	
	kicks0ut
a	g
b	d
c	
d	
e	
f	
g	
h	g
i	d

An Example - Contracting Stage

bestInEdge V1 g V2 d V3 f V4 h a kicks0ut b g c d d e f g h i

An Example - Contracting Stage

An Example - Contracting Stage

An Example - Contracting Stage

Chu-Liu-Edmonds - Expanding Stage

After the contracting stage, every contracted node will have exactly one bestInEdge. This edge will kick out one edge inside the contracted node, breaking the cycle.

- Go through each bestInEdge e in the reverse order that we added them
- lock down e, and remove every edge in kicksOut(e) from bestInEdge.

An Example - Expanding Stage

	bestInEdge
V1	g
V2	d
V3	f
V4	h
V5	a
	kicksOut
a	g, h
b	d, h
c	f
d	
e	f
f	
g	
h	g
i	d

An Example - Expanding Stage

	bestInEdge
V1	a \%
V2	d
V3	f
V4	a $¢$
V5	a
	kicksOut
a	g, h
b	d, h
C	f
d	
e	f
f	
g	
h	g
i	d

An Example - Expanding Stage

	bestInEdge
V1	a of
V2	d
V3	f
V4	a $¢$
V5	a
	kicksOut
a	g, h
b	d, h
c	f
d	
e	f
f	
g	
h	g
i	d

An Example - Expanding Stage

	bestInEdge
V1	a of
V2	d
V3	f
V4	a h
V5	a
	kicks0ut
a	g, h
b	d, h
c	f
d	
e	f
f	
g	
h	g
i	d

An Example - Expanding Stage

An Example - Expanding Stage

Chu-Liu-Edmonds - Recursive Definition

```
def Get1Best(\langleV,E\rangle, ROOT):
    """ returns best arborescence as a map from each node to its parent
    for v in V\ROOT:
        bestInEdge[v] \leftarrow arg max }u\inV score[(u,v)
        if bestInEdge contains a cycle C:
            # build a new graph in which C is contracted into a single node
            v}\mp@subsup{C}{}{\prime}\leftarrow\mathrm{ new Node
            V ^ { \prime } \leftarrow V \cup \{ v _ { C } \} \ C
            E ^ { \prime } \leftarrow \emptyset
            for e=(t,u) in E:
            if }t\not\inC\mathrm{ and }u\not\inC\mathrm{ :
                e}\mp@subsup{}{}{\prime}\leftarrow
            elif t\inC and u\not\inC:
                e}\mp@subsup{}{}{\prime}\leftarrow\mathrm{ new Edge (v}\mp@subsup{v}{C}{},u
                score[e']}\leftarrow\mathrm{ score[e]
            elif }u\inC\mathrm{ and t&C:
                e}\mp@subsup{}{}{\prime}\leftarrow\mathrm{ new Edge ( }t,\mp@subsup{v}{C}{}
                kicksOut[e']}\leftarrow bestInEdge[u
                score[\mp@subsup{e}{}{\prime}]\leftarrow score[e] - score[kicksOut[e'f]
            real[ [\mp@subsup{e}{}{\prime}]\leftarrowe # remember the original
            E'}\leftarrow\mp@subsup{E}{}{\prime}\cup{\mp@subsup{e}{}{\prime}
            A\leftarrowGet1Best ( }\langle\mp@subsup{V}{}{\prime},\mp@subsup{E}{}{\prime}\rangle,ROOT
            return {real [e'] | e' }\inA}\cup(\mp@subsup{C}{E}{}\{\mathrm{ kicksOut [A[v}[\mp@code{l}]}
    return bestInEdge
```


Chu-Liu-Edmonds - Notes

- Efficient implementation:

Tarjan '77, Finding Optimum Branchings, Networks
Not recursive. Uses a union-find (a.k.a. disjoint-set) data structure to keep track of collapsed nodes.

Chu-Liu-Edmonds - Notes

- Efficient (wrong) implementation:

Tarjan '77, Finding Optimum Branchings*, Networks
*corrected in Camerini et al. '79, A note on finding optimum branchings, Networks
Not recursive. Uses a union-find (a.k.a. disjoint-set) data structure to keep track of collapsed nodes.

Chu-Liu-Edmonds - Notes

- Efficient (wrong) implementation:

Tarjan '77, Finding Optimum Branchings*, Networks
*corrected in Camerini et al. '79, A note on finding optimum branchings,
Networks
Not recursive. Uses a union-find (a.k.a. disjoint-set) data structure to keep track of collapsed nodes.

- Even more efficient:

Gabow et al. '86, Efficient Algorithms for Finding Minimum Spanning Trees in Undirected and Directed Graphs, Combinatorica Uses a Fibonacci heap to keep incoming edges sorted.
Describes how to constrain ROOT to have only one outgoing edge

Chu-Liu-Edmonds - Notes

- Efficient (wrong) implementation:

Tarjan '77, Finding Optimum Branchings*, Networks
*corrected in Camerini et al. '79, A note on finding optimum branchings,
Networks
Not recursive. Uses a union-find (a.k.a. disjoint-set) data structure to keep track of collapsed nodes.

- Even more efficient:

Gabow et al. '86, Efficient Algorithms for Finding Minimum Spanning
Trees in Undirected and Directed Graphs, Combinatorica
Uses a Fibonacci heap to keep incoming edges sorted.
Describes how to constrain ROOT to have only one outgoing edge

- There is a version where you don't have to specify ROOT

Camerini

The Goal

Find exact k-best parses of a sentence given the weights of the graph

The Goal

Find exact k-best parses of a sentence given the weights of the graph

But why?

The Goal

Find exact k-best parses of a sentence given the weights of the graph

But why?

- Model might not be correct, rerank k-best parses
- Constrained models (think global features)

State of the art

- MSTParser and MaltParser produce an approximate k-best list
- TurboParser has no k-best feature

Central Idea

Central Idea

1. We know how to get $A^{(1)}$, the 1-best arborescence.

Central Idea

1. We know how to get $A^{(1)}$, the 1-best arborescence.
2. There is at least one edge in $A^{(1)}$, which should not be in the 2nd best arborescence.

Central Idea

1. We know how to get $A^{(1)}$, the 1-best arborescence.
2. There is at least one edge in $A^{(1)}$, which should not be in the 2nd best arborescence.
3. Let us call this maximum impact edge, say e.

Central Idea

1. We know how to get $A^{(1)}$, the 1-best arborescence.
2. There is at least one edge in $A^{(1)}$, which should not be in the 2nd best arborescence.
3. Let us call this maximum impact edge, say e. We have an algorithm to find e.

Central Idea

1. We know how to get $A^{(1)}$, the 1-best arborescence.
2. There is at least one edge in $A^{(1)}$, which should not be in the 2nd best arborescence.
3. Let us call this maximum impact edge, say e. We have an algorithm to find e.
4. Now consider two possibilities:

- e is banned (this includes the 2nd best solution)
- e is required (this includes the 1st best solution, A)

Central Idea

1. We know how to get $A^{(1)}$, the 1-best arborescence.
2. There is at least one edge in $A^{(1)}$, which should not be in the 2nd best arborescence.
3. Let us call this maximum impact edge, say e. We have an algorithm to find e.
4. Now consider two possibilities:

- e is banned (this includes the 2nd best solution)
- e is required (this includes the 1st best solution, A)

5. Partition the whole search space into two smaller subspaces.

Partition the solution space

Let reqd $=$ set of edges that must be included and banned $=$ set of edges that must be excluded.

Partitioning the solution space

```
reqd =\emptyset
banned = \emptyset
```


Partitioning the solution space

```
reqd = \emptyset
banned = \emptyset
```


Partitioning the solution space

Outline of the rest of the talk

- Find best arborescence A s.t. reqd $\subseteq A \subseteq E \backslash$ banned Algorithm GetConstrained1Best(G, ROOT, reqd, banned)
- Find an edge $e \in A \backslash$ reqd that defines the next partition. Algorithm FindEdgeToBan(G, ROOT, A, reqd, banned)
- Smart way to search the subspace of solutions Algorithm GetKBest(G, ROOT, k)

Algorithm GetConstrained1Best(G, R00T, reqd, banned)

Throw out edges before you feed the graph into Get1Best:

- Throw out every edge in banned
- Throw out every edge that competes with any edge in reqd
- Run Get1Best

Runtime
$O\left(n^{2}\right)$

Outline of the rest of the talk

- Find best arborescence A s.t. reqd $\subseteq A \subseteq E \backslash$ banned Algorithm-GetGenstrained1Bed (G, ROOT, reqd, banned)
- Find an edge $e \in A \backslash$ reqd that defines the next partition. Algorithm FindEdgeToBan(G, ROOT, A, reqd, banned)
- Smart way to search the subspace of solutions Algorithm GetKBest(G, ROOT, k)

Algorithm FindEdgeToBan(G, ROOT, A, reqd, banned)

- Input (A, reqd, banned),
- For every edge e in A \reqd, find the next best alternative edge, alt(e)
- this alternative cannot be in banned
- the source of this alternative must not be lower down in the tree A
- Return eBan, the edge e in $A \backslash$ reqd with the highest scoring alternative
- Return diff $=\operatorname{score}(e B a n)-\operatorname{alt}(e B a n)$

Return variables eBan, diff
Runtime
$O\left(n^{2}\right)$

Example run FindEdgeToBan

FindEdgeToBan(G, ROOT, $A^{(1)}$, reqd $=\emptyset$, banned $\left.=\emptyset\right)$

$$
\operatorname{diff}=+\infty, \text { eBan }=\emptyset
$$

Example run FindEdgeToBan

FindEdgeToBan(G, ROOT, $A^{(1)}$, reqd $=\emptyset$, banned $\left.=\emptyset\right)$

$$
\operatorname{diff}=+\infty, \text { eBan }=\emptyset
$$

Example run FindEdgeToBan

FindEdgeToBan(G, ROOT, $A^{(1)}$, reqd $=\emptyset$, banned $\left.=\emptyset\right)$

$$
\operatorname{diff}=+\infty, \text { eBan }=\emptyset
$$

Example run FindEdgeToBan

FindEdgeToBan $\left(G\right.$, ROOT, $A^{(1)}$, reqd $=\emptyset$, banned $\left.=\emptyset\right)$

$$
\begin{gathered}
\operatorname{alt}(d)=b \\
\operatorname{diff}=10, \text { eBan }=d
\end{gathered}
$$

Example run FindEdgeToBan

FindEdgeToBan $\left(G\right.$, ROOT, $A^{(1)}$, reqd $=\emptyset$, banned $\left.=\emptyset\right)$

$$
\operatorname{alt}(d)=b
$$

$\operatorname{diff}=10$, eBan $=d$

Example run FindEdgeToBan

FindEdgeToBan $\left(G\right.$, ROOT, $A^{(1)}$, reqd $=\emptyset$, banned $\left.=\emptyset\right)$

$$
\begin{gathered}
\operatorname{alt}(d)=b \\
\operatorname{diff}=10, \text { eBan }=d
\end{gathered}
$$

Example run FindEdgeToBan

FindEdgeToBan $\left(G\right.$, ROOT, $A^{(1)}$, reqd $=\emptyset$, banned $\left.=\emptyset\right)$

$$
\begin{gathered}
\operatorname{alt}(d)=b \\
\operatorname{diff}=10, \text { eBan }=d
\end{gathered}
$$

Example run FindEdgeToBan

FindEdgeToBan $\left(G\right.$, ROOT, $A^{(1)}$, reqd $=\emptyset$, banned $\left.=\emptyset\right)$

$$
\begin{gathered}
\operatorname{alt}(f)=e \\
\operatorname{diff}=1, \text { eBan }=f
\end{gathered}
$$

Example run FindEdgeToBan

FindEdgeToBan $\left(G\right.$, ROOT, $A^{(1)}$, reqd $=\emptyset$, banned $\left.=\emptyset\right)$

$$
\begin{gathered}
\operatorname{alt}(f)=e \\
\operatorname{diff}=1, \text { eBan }=f
\end{gathered}
$$

Example run FindEdgeToBan

FindEdgeToBan $\left(G\right.$, ROOT, $A^{(1)}$, reqd $=\emptyset$, banned $\left.=\emptyset\right)$

$$
\operatorname{alt}(f)=e
$$

$\operatorname{diff}=1$, eBan $=f$

Example run FindEdgeToBan

FindEdgeToBan $\left(\right.$ G, ROOT, $A^{(1)}$, reqd $=\emptyset$, banned $\left.=\emptyset\right)$

$$
\operatorname{alt}(f)=e
$$

$$
\operatorname{diff}=1, \text { eBan }=f
$$

Example run FindEdgeToBan

FindEdgeToBan $\left(\right.$ G, ROOT, $A^{(1)}$, reqd $=\emptyset$, banned $\left.=\emptyset\right)$

$$
\operatorname{alt}(a)=c
$$

$$
\operatorname{diff}=0, \text { eBan }=a
$$

Example run FindEdgeToBan

FindEdgeToBan(G, ROOT, $A^{(1)}$, reqd $=\emptyset$, banned $\left.=\emptyset\right)$

$$
\begin{gathered}
\operatorname{alt}(a)=c \\
\operatorname{diff}=0, \text { eBan }=a
\end{gathered}
$$

Outline of the rest of the talk

- Find best arborescence A s.t. reqd $\subseteq A \subseteq E \backslash$ banned Algorithm-GetGenstrained1Bed (G, ROOT, reqd, banned)
- Find an edge $e \in A \backslash$ reqd that defines the next partition. Algorithm FindEdgeTeBan(G, ROOT, A, reqd, banned)
- Smart way to search the subspace of solutions Algorithm GetKBest(G, ROOT, k)

Revisit partitioning

Algorithm GetKBest(G, ROOT, k)

- For every partition, save the following tuple: (wt, eBan, A, reqd, banned)
- $A=$ GetConstrained1Best(G, ROOT, reqd, banned) corresponds to the best solution in the partition
- diff, eBan $=$ FindEdgeToBan(G, ROOT, A, reqd, banned)
- $\mathrm{wt}=\operatorname{score}(A)-\operatorname{diff}$
- Maintain a priority queue, Q containing all tuples sorted by wt
- Q determines which path to traverse in the search space

GetKBest

```
def GetKBest(G, ROOT, k):
    """ returns k-best arborescences
    reqd}\leftarrow\emptyset\mathrm{ banned }\leftarrow
    A}\mp@subsup{}{(1)}{\leftarrowG\operatorname{Get1Best}(\langleG.V,G.E\rangle, ROOT)
    diff, eBan \leftarrowFindEdgeToBan(G, ROOT, }\mp@subsup{A}{}{(1)}\mathrm{ , reqd, banned)
    Q.push((score( }\mp@subsup{A}{}{(1)})-\operatorname{diff},\textrm{eBan},\mp@subsup{A}{}{(1)},\mathrm{ reqd, banned))
    for j in 2 . . k:
    (wt, eBan, \overline{A}, reqd, banned) }\leftarrow\mathrm{ Q.pop()
    if }wt==-\infty\mathrm{ :
            return }\mp@subsup{A}{}{(1)},\ldots,\mp@subsup{A}{}{(j-1)
    reqd}\leftarrow reqd \cup{eBan
    banned }\leftarrow\mathrm{ banned }\cup{eBan
    A(j)}\leftarrow\mathrm{ GetConstrained1Best(G, ROOT, reqd, banned')
    diff, eBan \leftarrowFindEdgeToBan(G, ROOT, }\overline{A}\mathrm{ , reqqd, banned)
    Q.push((score(\overline{A})-\operatorname{diff}, eBan, }\overline{A},\mathrm{ reqqd, banned ))
    diff, eBan \leftarrowFindEdgeToBan(G, ROOT, }\overline{A}\mathrm{ , reqd, banned)
    Q.push((wt - diff, eBan, \overline{A}, reqd, banned))
return \(A^{(1)}, \ldots, A^{(k)}\)
Runtime
\(O\left(k n^{2}\right)\)
```


GetKBest example : 1-best

$$
A^{(1)} \leftarrow \text { GetConstrained1Best }(\mathrm{G}, \text { ROOT, reqd }=\emptyset \text {, banned }=\emptyset)
$$

GetKBest example : 1-best

$$
A^{(1)} \leftarrow \text { GetConstrained1Best }(\mathrm{G}, \mathrm{ROOT}, \text { reqd }=\emptyset, \text { banned }=\emptyset)
$$

$($ diff $=0$, eBan $=a) \leftarrow$ FindEdgeToBan $\left(G\right.$, ROOT, $A^{(1)}$, reqd $=\emptyset$, banned $\left.=\emptyset\right)$

GetKBest example : 1-best

$$
A^{(1)} \leftarrow \text { GetConstrained1Best }(\mathrm{G}, \mathrm{ROOT}, \text { reqd }=\emptyset \text {, banned }=\emptyset)
$$

$($ diff $=0$, eBan $=a) \leftarrow$ FindEdgeToBan $\left(G\right.$, ROOT, $A^{(1)}$, reqd $=\emptyset$, banned $\left.=\emptyset\right)$

GetKBest example: 2-best

$$
\left.A^{(2)} \leftarrow \text { GetConstrained1Best(G, ROOT, reqd }=\emptyset \text {, banned }=\{a\}\right)
$$

GetKBest example: 2-best

$$
\left.A^{(2)} \leftarrow \text { GetConstrained1Best(G, ROOT, reqd }=\emptyset \text {, banned }=\{a\}\right)
$$

$($ diff $=1$, eBan $=f) \leftarrow$ FindEdgeToBan $\left(G\right.$, ROOT,$A^{(1)}$, reqd $=\{a\}$, banned $\left.=\emptyset\right)$

GetKBest example: 2-best

$$
\left.A^{(2)} \leftarrow \text { GetConstrained1Best(G, ROOT, reqd }=\emptyset \text {, banned }=\{a\}\right)
$$

Q
$\left(21, a, A^{(1)}, \emptyset, \emptyset\right)$
$\left(20, f, A^{(1)},\{a\}, \emptyset\right)$

$(\operatorname{diff}=1$, eBan $=f) \leftarrow$ FindEdgeToBan $\left(G\right.$, ROOT,$A^{(1)}$, reqd $=\{a\}$, banned $\left.=\emptyset\right)$

GetKBest example: 2-best

$$
A^{(2)} \leftarrow \text { GetConstrained1Best }(\mathrm{G}, \text { ROOT }, \text { reqd }=\emptyset \text {, banned }=\{a\})
$$

$$
\begin{aligned}
& (\text { diff }=1, \text { eBan }=f) \leftarrow \text { FindEdgeToBan }\left(G, \text { ROOT }, A^{(1)}, \text { reqd }=\{a\}, \text { banned }=\emptyset\right) \\
& (\text { diff }=2, \text { eBan }=h) \leftarrow \text { FindEdgeToBan }\left(G, \text { ROOT }, A^{(1)}, \text { reqd }=\emptyset, \text { banned }=\{a\}\right)
\end{aligned}
$$

GetKBest example: 2-best

$$
\left.A^{(2)} \leftarrow \text { GetConstrained1Best(G, ROOT, reqd }=\emptyset \text {, banned }=\{a\}\right)
$$

$($ diff $=1$, eBan $=f) \leftarrow$ FindEdgeToBan $\left(G\right.$, ROOT,$A^{(1)}$, reqd $=\{$ a $\}$, banned $\left.=\emptyset\right)$ $($ diff $=2$, eBan $=h) \leftarrow$ FindEdgeToBan $\left(G\right.$, ROOT,$A^{(1)}$, reqd $=\emptyset$, banned $\left.=\{a\}\right)$

GetKBest example : 3-best

$$
A^{(3)} \leftarrow \text { GetConstrained1Best }(\mathrm{G}, \text { ROOT }, \text { reqd }=\{\mathrm{a}\}, \text { banned }=\{f\})
$$

Conclusion

- Graph-based formulation for dependency parsing
- 1-best algorithm by Chu-Liu-Edmonds
- k-best algorithm by Camerini

