Biases and Interpretability in NLP

3rd Dec CS395T - Fall 2020 Swabha Swayamdipta

Google Translate 안 Machine Translator 아 Hello

UT-Austin | Swabha Swayamdipta

SuperGLUE [Wang et al., 2019]

3

SuperGLUE [Wang et al., 2019]

Natural Language Inference

UT-Austin | Swabha Swayamdipta

Natural Language Inference

Given a premise, is a hypothesis true, false or neither?

UT-Austin | Swabha Swayamdipta

Natural Language Inference

Given a premise, is a hypothesis true, false or neither?

Premise

A dog is chasing birds on the shore of the ocean.

UT-Austin | Swabha Swayamdipta

Hypothesis

The cat is chasing birds.

Natural Language Inference

Given a premise, is a hypothesis true, false or neither?

Premise

A dog is chasing birds on the shore of the ocean.

UT-Austin | Swabha Swayamdipta

- → Entailment **O** True
- **O** False → Contradiction
- C Cannot Say → Neutral

Hypothesis

The cat is chasing birds.

Stanford NLI [Bowman et al., 2015]

4

Natural Language Inference

Given a premise, is a hypothesis true, false or neither?

Premise

A dog is chasing birds on the shore of the ocean.

UT-Austin | Swabha Swayamdipta

O True → Entailment

→ Contradiction

C Cannot Say → Neutral

Hypothesis

The cat is chasing birds.

Premise Hypothesis

A dog is chasing birds on the shore of the ocean.

Three kids playing with a toy cat in a garden.

The cat is chasing birds.

There's a toy cat and dog in the garden.

UT-Austin | Swabha Swayamdipta

A dog and cat are snuggling up during a nap.

A few people are staring at something.

A dog and cat are sharing a nap.

The people are staring at a cat.

Annotation Artifacts in NLI [G^* ., Swayamdipta*, L., S., B., S., 2018]

Premise Hypothesis

A dog is chasing birds on the shore of the ocean.

Three kids playing with a toy cat in a garden.

The cat is chasing birds.

There's a toy cat and dog in the garden.

Contradiction

Neutral Entailment Neutral

UT-Austin | Swabha Swayamdipta

A dog and cat are snuggling up during a nap.

A few people are staring at something.

A dog and cat are sharing a nap.

The people are staring at a cat.

Annotation Artifacts in NLI [G^* ., Swayamdipta*, L., S., B., S., 2018]

Premise Hypothesis

A dog is chasing birds on the shore of the ocean.

Three kids playing with a toy cat in a garden.

The cat is chasing birds.

There's a toy cat and dog in the garden.

Contradiction

Contradiction

Annotation Artifacts in NLI [<u>G*., Swayamdipta*, L., S., B., S., 2018</u>]

UT-Austin | Swabha Swayamdipta

A dog and cat are snuggling up during a nap.

A few people are staring at something.

A dog and cat are sharing a nap.

The people are staring at a cat.

Entailment Neutral

Contradiction Contradiction

Object Recognition

Object Recognition

UT-Austin | Swabha Swayamdipta

Object Recognition

UT-Austin | Swabha Swayamdipta

Object Recognition

UT-Austin | Swabha Swayamdipta

Object Recognition

UT-Austin | Swabha Swayamdipta

Object Recognition

UT-Austin | Swabha Swayamdipta

Language Generation

UT-Austin | Swabha Swayamdipta

RealToxicityPrompts [Gehman et. al, 2020]

Why this discrepancy?

The NLP Pipeline

The NLP Pipeline Raw Data

The NLP Pipeline

UT-Austin | Swabha Swayamdipta

Training

The NLP Pipeline

UT-Austin | Swabha Swayamdipta

Training

The NLP Pipeline

UT-Austin | Swabha Swayamdipta

This Lecture

Biases in NLP

- Dataset Biases
- Model Biases

UT-Austin | Swabha Swayamdipta

This Lecture

Biases in NLP

• Dataset Biases

• Model Biases

Discovering Biases via Interpretability Methods

- Saliency Methods
- Input Attributions
- Architectural Modifications

UT-Austin | Swabha Swayamdipta

This Lecture

Biases in NLP

• Dataset Biases

Model Biases

Discovering Biases via Interpretability Methods

- Saliency Methods
- Input Attributions
- Architectural Modifications

UT-Austin | Swabha Swayamdipta

This Lecture

Mitigating Biases

- Filtering Datasets
- Auxiliary Objectives

Biases in NLP

• Dataset Biases

Model Biases

Discovering Biases via Interpretability Methods

Saliency Methods

Input Attributions

UT-Austin | Swabha Swayamdipta

This Lecture

- Architectural Modifications

Mitigating Biases

- Filtering Datasets
- Auxiliary Objectives

What is Bias?

What is Bias?

• Preference of one decision over another

What is Bias?

• Preference of one decision over another

What is Bias?

• Preference of one decision over another

What is Bias?

• Preference of one decision over another

Human biases are reflected in datasets

What is Bias?

• Preference of one decision over another

Human biases are reflected in datasets

UT-Austin | Swabha Swayamdipta

Model biases are reflected in AI decisions

Deployment

What is Bias?

• Preference of one decision over another

Human biases are reflected in datasets

UT-Austin | Swabha Swayamdipta

Model biases are reflected in AI decisions

Deployment

Human Biases in Raw Data

Human Biases in Raw Data

UT-Austin | Swabha Swayamdipta

The scientist named the population, after their distinctive horn, Ovid's Unicorn.

- The Donald
- Breitbart News

RealToxicityPrompts [Gehman et. al, 2020]

Human biases in Data Annotation

Human biases in Data Annotation

UT-Austin | Swabha Swayamdipta

Example from the Flickr30k Dataset

Credit: van Miltenburg [2016] & Paullada A. [2020] Using Datasets Wisely

Human biases in Data Annotation

A blond girl and a bald man with his arms crossed are standing inside looking at each other.

UT-Austin | Swabha Swayamdipta

Example from the Flickr30k Dataset

Credit: <u>van Miltenburg [2016]</u> & Paullada A. [2020] Using Datasets Wisely

Human biases in Data Annotation

A blond girl and a bald man with his arms crossed are standing inside looking at each other.

A worker is being scolded by her boss in a stern lecture.

UT-Austin | Swabha Swayamdipta

Example from the Flickr30k Dataset

Credit: <u>van Miltenburg [2016]</u> & Paullada A. [2020] Using Datasets Wisely

Human biases in Data Annotation

A blond girl and a bald man with his arms crossed are standing inside looking at each other.

A worker is being scolded by her boss in a stern lecture.

A hot, blond girl getting criticized by her boss.

Credit: van Miltenburg [2016] & Paullada A. [2020] Using Datasets Wisely

UT-Austin | Swabha Swayamdipta

Example from the Flickr30k Dataset

Human Biases affecting Datasets

Training data are collected and annotated

UT-Austin | Swabha Swayamdipta

Human Biases affecting Datasets

Human Biases in Data

Reporting bias Selection bias Overgeneralization Out-group homogeneity bias Stereotypical bias Historical unfairness Implicit associations Implicit stereotypes Prejudice

Group attribution error Halo effect

Human Biases in Collection and Annotation

Sampling error

Non-sampling error Insensitivity to sample size **Correspondence bias** In-group bias

Bias blind spot Confirmation bias **Subjective validation Experimenter's bias Choice-supportive bias** Neglect of probability Anecdotal fallacy Illusion of validity

Source: <u>Bias in the Vision and Language of Artificial Intelligence</u>, <u>Mitchell 2019</u>

Premise Hypothesis

A dog is chasing birds on the shore of the ocean.

Three kids playing with a toy cat in a garden.

The cat is chasing birds.

There's a toy cat and dog in the garden.

UT-Austin | Swabha Swayamdipta

A dog and cat are snuggling up during a nap.

A few people are staring at something.

A dog and cat are sharing a nap.

The people are staring at a cat.

Premise Hypothesis

A dog is chasing birds on the shore of the ocean.

Three kids playing with a toy cat in a garden.

The cat is chasing birds.

There's a toy cat and dog in the garden.

Contradiction

Neutral

UT-Austin | Swabha Swayamdipta

A dog and cat are snuggling up during a nap.

A few people are staring at something.

A dog and cat are sharing a nap.

The people are staring at a cat.

Entailment

Neutral

Premise Hypothesis

A dog is chasing birds on the shore of the ocean.

Three kids playing with a toy cat in a garden.

The cat is chasing birds.

There's a toy cat and dog in the garden.

Contradiction

Contradiction

Entailment Neutral Neutral Contradiction Contradiction Contradiction

UT-Austin | Swabha Swayamdipta

A dog and cat are snuggling up during a nap.

A few people are staring at something.

A dog and cat are sharing a nap.

The people are staring at a cat.

Premise Hypothesis

A dog is chasing birds on the shore of the ocean.

Three kids playing with a toy cat in a garden.

The cat is chasing birds.

There's a toy cat and dog in the garden.

Contradiction

Neutral

Contradiction

UT-Austin | Swabha Swayamdipta

A dog and cat are snuggling up during a nap.

A few people are staring at something.

A dog and cat are sharing a nap.

The people are staring at a cat.

Entailment

Neutral

Contradiction

Contradiction

00 Prem S **Hypothes**

A dog is chasing birds on the shore of the ocean.

Three kids playing with a toy cat in a garden.

The cat is chasing birds.

Contradiction

Contradiction Contradiction

54%

UT-Austin | Swabha Swayamdipta

Annotation Artifacts in NLI [<u>G*., Swayamdipta*, L., S., B., S., 2018</u>]

SO Prem S Hypothes

A dog is chasing birds on the shore of the ocean.

The cat is chasing birds.

UT-Austin | Swabha Swayamdipta

Annotation Artifacts in NLI [<u>G*., Swayamdipta*, L., S., B., S., 2018</u>]

Inductive Biases in Models

Hypothesis

UT-Austin | Swabha Swayamdipta

Two dogs are running through a field.

The pets are sitting on a couch.

Hypothesis

UT-Austin | Swabha Swayamdipta

The pets are sitting on a couch.

Hypothesis

Hypothesis

Hypothesis

Hypothesis

Hypothesis

Premise

Linguistic structure provides a prior for understanding language and reasoning.

UT-Austin | Swabha Swayamdipta

Syntactic Inductive Biases in NLP [Swayamdipta, 2019, PhD Thesis]

Inductive vs. Spurious Biases

Inductive vs. Spurious Biases

A dog is chasing birds on the shore of the ocean.

The cat is chasing birds.

UT-Austin | Swabha Swayamdipta

Contradiction

Inductive vs. Spurious Biases

• "A spurious correlation is a mathematical relationship in which two or more events or variables are associated but not causally related, due to either coincidence or the presence of a certain third, unseen factor." (Burns, 1997)

A dog is chasing birds on the shore of the ocean.

The cat is chasing birds.

UT-Austin | Swabha Swayamdipta

Contradiction

Inductive vs. Spurious Biases

• "A spurious correlation is a mathematical relationship in which two or more events or variables are associated but not causally related, due to either coincidence or the presence of a certain third, unseen factor." (Burns, 1997)

A dog is chasing birds on the shore of the ocean.

The cat is chasing birds.

Inductive vs. Spurious Biases

- "A spurious correlation is a mathematical relationship in which two or more events or variables are associated but not causally related, due to either coincidence or the presence of a certain third, unseen factor." (Burns, 1997)
- over others (Mitchell, 1980)

UT-Austin | Swabha Swayamdipta

• An inductive bias in machine learning refers to a training signal which allows the model to pick the correct solution

Contradiction

Spurious Biases Cat indicates contradiction

Inductive vs. Spurious Biases

- "A spurious correlation is a mathematical relationship in which two or more events or variables are associated but not causally related, due to either coincidence or the presence of a certain third, unseen factor." (Burns, 1997)
- over others (Mitchell, 1980)

UT-Austin | Swabha Swayamdipta

• An inductive bias in machine learning refers to a training signal which allows the model to pick the correct solution

Some examples might contain offensive or triggering content

Harmful Spurious Biases

Some examples might contain offensive or triggering content

Harmful Spurious Biases

Rudinger et al. 2018

UT-Austin | Swabha Swayamdipta

Harmful Spurious Biases

patient : The surgeon could n't operate on her Rudinger et al. 2018

UT-Austin | Swabha Swayamdipta

Harmful Spurious Biases

a) ground truth

b) blurred input

c) output

Figure 2. Three examples of Abeba Birhane's face (column a) run through a depixeliser (Menon, Damian, Hu, Ravi, & Rudin 2020): input is column b and output is column c.

[Birhane & Guest, 2020]

Rudinger et al. 2018

UT-Austin | Swabha Swayamdipta

Harmful Spurious Biases

a) ground truth

b) blurred input

c) output

Figure 2. Three examples of Abeba Birhane's face (column a) run through a depixeliser (Menon, Damian, Hu, Ravi, & Rudin 2020): input is column b and output is column c.

[Birhane & Guest, 2020]

Biases in Models: Summary

Biases in Models: Summary

• Not always bad, but can be harmful when unintended

Biases in Models: Summary

- Not always bad, but can be harmful when unintended
- Types of model biases
 - Inductive
 - Spurious
 - Social

Biases in Models: Summary

- Not always bad, but can be harmful when unintended
- Types of model biases
 - Inductive
 - Spurious
 - Social

Biases in Models: Summary

- Not always bad, but can be harmful when unintended
- Types of model biases
 - Inductive
 - Spurious
 - Social

How to deal with biases?

How to deal with biases?

- Discover:
 - Interpreting the model's decisions

How to deal with biases?

• Discover:

- Interpreting the model's decisions
- Mitigate:
 - Datasets
 - Model Objectives

Biases in NLP

- Dataset Biases
- Model Biases

- Discovering Biases via Interpretability Methods
 - Saliency Methods
 - Input Attribution
 - Architectural Modifications

UT-Austin | Swabha Swayamdipta

This Lecture

Mitigating Biases

- Filtering Datasets
- Auxiliary Objectives

Biases in NLP

- Dataset Biases
- Model Biases

- Discovering Biases via Interpretability Methods
 - Saliency Methods
 - Input Attribution
 - Architectural Modifications

UT-Austin | Swabha Swayamdipta

This Lecture

- Mitigating Biases
 - Filtering Datasets
 - Auxiliary Objectives

Interpretability

Interpretability

• How did the model come to a certain decision?

Interpretability

- How did the model come to a certain decision?
 - What in the data instance caused it? (Part 2 of this lecture)

Interpretability

- How did the model come to a certain decision?
 - What in the data instance caused it? (Part 2 of this lecture)
 - What in the dataset caused it? (Part 3 of this lecture)

Interpretability

- How did the model come to a certain decision?
 - What in the data instance caused it? (Part 2 of this lecture)
 - What in the dataset caused it? (Part 3 of this lecture)
 - What in the model caused it? (Attention maps; not in lecture)

Interpretability for Bias Discovery

relies on some spurious biases.

UT-Austin | Swabha Swayamdipta

- relies on some spurious biases.
- More broadly, interpretability is also useful for :

UT-Austin | Swabha Swayamdipta

- relies on some spurious biases.
- More broadly, interpretability is also useful for :
 - Building user trust

UT-Austin | Swabha Swayamdipta

- relies on some spurious biases.
- More broadly, interpretability is also useful for :
 - Building user trust
 - Debugging models

UT-Austin | Swabha Swayamdipta

- relies on some spurious biases.
- More broadly, interpretability is also useful for :
 - Building user trust
 - Debugging models
 - Alternative to traditional evaluation metrics

UT-Austin | Swabha Swayamdipta

- relies on some spurious biases.
- More broadly, interpretability is also useful for :
 - Building user trust
 - Debugging models
 - Alternative to traditional evaluation metrics
- the model's prediction" [Jacovi & Goldberg, 2019; Subramanian et al., 2020 (in previous lecture)]

UT-Austin | Swabha Swayamdipta

• If the model came to the correct decision, even as some critical information is withheld, it likely

• Faithfulness: "a faithful interpretation is one that accurately represents the reasoning process behind

Interpretability Landscape

Interpretability Landscape

Black Box

UT-Austin | Swabha Swayamdipta

Open Box

Construct the Box

Methodology

Interpretability Landscape Dataset Granularity Instance Black Box Open Box Methodology

UT-Austin | Swabha Swayamdipta

Construct the Box

UT-Austin | Swabha Swayamdipta

Interpretability Landscape

Open Box

Construct the Box

Methodology

UT-Austin | Swabha Swayamdipta

Interpretability Landscape

Open Box

Construct the Box

Methodology

UT-Austin | Swabha Swayamdipta

Interpretability Landscape

Attention Maps

Open Box

Construct the Box

Methodology

UT-Austin | Swabha Swayamdipta

Interpretability Landscape

Attention Maps

Information Bottleneck

Architectural Modifications

Probes

Rationale Generation

Construct the Box

Open Box

Methodology

Method 1: Saliency Maps

Slide adapted from Sameer Singh's tutorial on Interpretability at EMNLP 2020

Method 1: Saliency Maps

• Compute the relative importance of features in the input by computing how the prediction changes with respect to the features.

UT-Austin | Swabha Swayamdipta

Method 1: Saliency Maps

- Compute the relative importance of features in the input by computing how the prediction changes with respect to the features.
- Features in NLP: Tokens

UT-Austin | Swabha Swayamdipta

Method 1: Saliency Maps

- Compute the relative importance of features in the input by computing how the prediction changes with respect to the features.
- Features in NLP: Tokens

an intelligent fiction about learning through cultural clash. Sentiment What company won free advertisement due to QuickBooks contest ? QA [CLS] The [MASK] ran to the emergency room to see her patient . [SEP] MLM

Slide adapted from Sameer Singh's <u>tutorial on Interpretability at EMNLP 2020</u>

Saliency with Gradients

UT-Austin | Swabha Swayamdipta

Simoyan et al. 2014

Saliency with Gradients

• How much does the output change with changes in the input?

UT-Austin | Swabha Swayamdipta

Simoyan et al. 2014

Saliency with Gradients

- How much does the output change with changes in the input?
 - Gradients: Derivative of the output with respect to the input

UT-Austin | Swabha Swayamdipta

Simoyan et al. 2014

Saliency with Gradients

- How much does the output change with changes in the input?
 - Gradients: Derivative of the output with respect to the input

UT-Austin | Swabha Swayamdipta

Simoyan et al. 2014

Saliency Score

UT-Austin | Swabha Swayamdipta

<u>Han et al. 2020</u>

Saliency Score

• Gradients: Derivative of the output with respect to the input

UT-Austin | Swabha Swayamdipta

Han et al. 2020

Saliency Score

- Gradients: Derivative of the output with respect to the input
- Output?

UT-Austin | Swabha Swayamdipta

Han et al. 2020

Saliency Score

- Gradients: Derivative of the output with respect to the input
- Output?
 - Probability, Logit, Loss (wrt prediction)

Saliency Score

- Gradients: Derivative of the output with respect to the input
- Output?
 - Probability, Logit, Loss (wrt prediction)
- Input?

Saliency Score

- Gradients: Derivative of the output with respect to the input
- Output?
 - Probability, Logit, Loss (wrt prediction)
- Input?
 - Feature, Token (Embedding)

Saliency Score

- Gradients: Derivative of the output with respect to the input
- Output?
 - Probability, Logit, Loss (wrt prediction)
- Input?
 - Feature, Token (Embedding)
- The most agreed upon saliency score is given by:

UT-Austin | Swabha Swayamdipta

<u>Han et al. 2020</u>

Saliency Score

- Gradients: Derivative of the output with respect to the input
- Output?
 - Probability, Logit, Loss (wrt prediction)
- Input?
 - Feature, Token (Embedding)
- The most agreed upon saliency score is given by:

UT-Austin | Swabha Swayamdipta

 $-\nabla_{e(t)}\mathcal{L}_{\hat{y}}\cdot e(t)$

<u>Han et al. 2020</u>

Problems with Saliency

Problems with Saliency

• Fragile, sensitive to local perturbations [Ghorbani et al., 2017]

Problems with Saliency

• Fragile, sensitive to local perturbations [Ghorbani et al., 2017]

Problems with Saliency

- Fragile, sensitive to local perturbations [Ghorbani et al., 2017]
- Saliency accounts for importance at the token level. However, language is compositional.

Proposed Workarounds

UT-Austin | Swabha Swayamdipta

Proposed Workarounds

• Smoothed Gradients [Smilkov et al. 2017]

UT-Austin | Swabha Swayamdipta

Proposed Workarounds

• Smoothed Gradients [Smilkov et al. 2017]

p(y|x)

UT-Austin | Swabha Swayamdipta

Proposed Workarounds

• Smoothed Gradients [Smilkov et al. 2017]

p(y|x)

UT-Austin | Swabha Swayamdipta

 Integrated Gradients [Sundarajan et al. 2017]

• Integrated Gradients [Sundarajan et al. 2017] p(y|x)p(y|x) x_2 X_1

Proposed Workarounds • Smoothed Gradients [Smilkov et al. 2017] ×₂

UT-Austin | Swabha Swayamdipta

Method 2: Input Attribution

Method 2: Input Attribution

UT-Austin | Swabha Swayamdipta

• Workaround for the token-level problem, can consider phrases or sentences in passages.

Method 2: Input Attribution

- Workaround for the token-level problem, can consider phrases or sentences in passages.
- Input perturbation: Select tokens to drop from the input

Method 2: Input Attribution

- Workaround for the token-level problem, can consider phrases or sentences in passages.
- Input perturbation: Select tokens to drop from the input
- How to select?

Method 2: Input Attribution

- Workaround for the token-level problem, can consider phrases or sentences in passages.
- Input perturbation: Select tokens to drop from the input
- How to select?
 - Valid and grammatical

Method 2: Input Attribution

- Workaround for the token-level problem, can consider phrases or sentences in passages.
- Input perturbation: Select tokens to drop from the input
- How to select?
 - Valid and grammatical
- Behavioral Testing

Method 2: Input Attribution

- Workaround for the token-level problem, can consider phrases or sentences in passages.
- Input perturbation: Select tokens to drop from the input
- How to select?
 - Valid and grammatical
- Behavioral Testing
 - Observing change in model behavior with changes in the signal

Leave-one-out

UT-Austin | Swabha Swayamdipta

[Li et al., 2017]

Leave-one-out

• Importance: change in prediction probability when a token is removed.

UT-Austin | Swabha Swayamdipta

[<u>Li et al., 2017</u>]

Leave-one-out

• Importance: change in prediction probability when a token is removed.

UT-Austin | Swabha Swayamdipta

[<u>Li et al., 2017</u>]

Question	Confidence	Highlight
What did Tesla spend Astor's money on ?	0.78	

Leave-one-out

• Importance: change in prediction probability when a token is removed.

[<u>Li et al., 2017</u>]

Question	Confidence	Highlight
What did Tesla spend Astor's money on ?	0.78	
What did Tesla spend Astor's money on ?	0.67	What

Leave-one-out

• Importance: change in prediction probability when a token is removed.

[<u>Li et al., 2017</u>]

Question	Confidence	Highlight
What did Tesla spend Astor's money on ?	<mark>0.78</mark>	
What did Tesla spend Astor's money on ?	0.67	What
What did Tesla spend Astor's money on ?	0.72	did

• Importance: change in prediction probability when a token is removed.

Leave-one-out

[<u>Li et al., 2017</u>]

Question	Confidence	Highlight
What did Tesla spend Astor's money on ?	0.78	
What did Tesla spend Astor's money on ?	0.67	What
What did Tesla spend Astor's money on ?	0.72	did
What did Tesla spend Astor's money on ?	0.66	Tesla
What did Tesla spend Astor's money on ?	0.74	spend
What did Tesla spend Astor's money on ?	0.76	Astor's
What did Tesla spend Astor's money on ?	0.48	money
What did Tesla spend Astor's money on ?	0.72	on
What did Tesla spend Astor's money on ?	0.73	?

• Importance: change in prediction probability when a token is removed.

Leave-one-out

[<u>Li et al., 2017</u>]

Question	Confidence	Highlight
What did Tesla spend Astor's money on ?	0.78	
What did Tesla spend Astor's money on ?	0.67	What
What did Tesla spend Astor's money on ?	0.72	did
What did Tesla spend Astor's money on ?	0.66	Tesla
What did Tesla spend Astor's money on ?	0.74	spend
What did Tesla spend Astor's money on ?	0.76	Astor's
What did Tesla spend Astor's money on ?	0.48	money
What did Tesla spend Astor's money on ?	0.72	on
What did Tesla spend Astor's money on ?	0.73	?

What did Tesla spend Astor's money on ?

- Importance: change in prediction probability when a token is removed.
- Obvious issue: it's not just a single token (or phrase) that matters, usually

Leave-one-out

[<u>Li et al., 2017]</u>

Question	Confidence	Highlight
What did Tesla spend Astor's money on ?	0.78	
What did Tesla spend Astor's money on ?	0.67	What
What did Tesla spend Astor's money on ?	0.72	did
What did Tesla spend Astor's money on ?	0.66	Tesla
What did Tesla spend Astor's money on ?	0.74	spend
What did Tesla spend Astor's money on ?	0.76	Astor's
What did Tesla spend Astor's money on ?	0.48	money
What did Tesla spend Astor's money on ?	0.72	on
What did Tesla spend Astor's money on ?	0.73	?

What did Tesla spend Astor's money on ?

UT-Austin | Swabha Swayamdipta

LIME

[<u>Ribeiro et al., 2016</u>]

• Find nearby inputs, based on cosine Distance

UT-Austin | Swabha Swayamdipta

LIME

- Find nearby inputs, based on cosine Distance
- Learn a linear classifier based on model predictions on those points

UT-Austin | Swabha Swayamdipta

LIME

LIME

- Find nearby inputs, based on cosine Distance
- Learn a linear classifier based on model predictions on those points
 - Use interpretable features

UT-Austin | Swabha Swayamdipta

- Find nearby inputs, based on cosine Distance
- Learn a linear classifier based on model predictions on those points
 - Use interpretable features
- Weights of the classifier indicate feature importance

UT-Austin | Swabha Swayamdipta

LIME

Problems with Input Perturbations

Problems with Input Perturbations

• How to perturb?

Problems with Input Perturbations

- How to perturb?
- Overall: "salient" gradients and inputs might not always be human interpretable

Problems with Input Perturbations

- How to perturb?
- Overall: "salient" gradients and inputs might not always be human interpretable
 - on biases.

UT-Austin | Swabha Swayamdipta

• General trend: if it does not match with human intuition, model is probably relying

Problems with Input Perturbations

- How to perturb?
- Overall: "salient" gradients and inputs might not always be human interpretable
 - on biases.
 - However, these biases are themselves not consistent / easy to interpret.

UT-Austin | Swabha Swayamdipta

• General trend: if it does not match with human intuition, model is probably relying

Other variants of input perturbations

• How much can be removed without changing the prediction? [Feng et al. 2018]

SQuAD	
Context	In 1899, John Jacob Astor IV invested \$100,000 Tesla to further develop and produce a new lighti system. Instead, Tesla used the money to fund
0.1.1	Colorado Springs experiments.
Original	What did Tesla spend Astor's money on ?
Reduced	did
Confidence	0.78 ightarrow 0.91
VQA	a second and as
Original	What color is the flower ?
Answer	yellow
Reduced	flower ?
Confidence	0.827 ightarrow 0.819
SNLI	
Premise	Well dressed man and woman dancing in the stre
Original	Two man is dancing on the street
Answer	Contradiction
Reduced	dancing
Confidence	0.077
connuence	0.911 - 0.100

- How much can be removed without changing the prediction? [Feng et al. 2018]
- Adversarial modifications

SQuAD	
Context	In 1899, John Jacob Astor IV invested \$100,000 Tesla to further develop and produce a new lighti system. Instead, Tesla used the money to fund
0.1.1	Colorado Springs experiments.
Original	What did Tesla spend Astor's money on ?
Reduced	did
Confidence	0.78 ightarrow 0.91
VQA	a second and as
Original	What color is the flower ?
Answer	yellow
Reduced	flower ?
Confidence	0.827 ightarrow 0.819
SNLI	
Premise	Well dressed man and woman dancing in the stre
Original	Two man is dancing on the street
Answer	Contradiction
Reduced	dancing
Confidence	0.077
connuence	0.911 - 0.100

- How much can be removed without change prediction? [Feng et al. 2018]
- Adversarial modifications
 - Additions [Addsent SQuAD; Jia & Liang, 2017]

UT-Austin | Swabha Swayamdipta

ngin	lg	th	le

SQuAD

Context Original Reduced Confidence	In 1899, John Jacob Astor IV invested \$100,000 Tesla to further develop and produce a new light system. Instead, Tesla used the money to fund Colorado Springs experiments . What did Tesla spend Astor's money on ? did $0.78 \rightarrow 0.91$
VQA Original Answer Reduced Confidence	What color is the flower ? yellow flower ? $0.827 \rightarrow 0.819$
SNLI Premise Original Answer Reduced Confidence	Well dressed man and woman dancing in the street Two man is dancing on the street Contradiction dancing $0.977 \rightarrow 0.706$

- How much can be removed without change prediction? [Feng et al. 2018]
- Adversarial modifications
 - Additions [Addsent SQuAD; Jia & Lia
 - Syntactic Paraphrases [SCPN; <u>Ivyer et</u>

ging the	SQuAD Context Original	In 1899, John Jacob Astor IV invested \$100,000 Tesla to further develop and produce a new light system. Instead, Tesla used the money to fund Colorado Springs experiments. What did Tesla spend Astor's money on ?
	Reduced Confidence	did $0.78 \rightarrow 0.91$
ng, 2017]	VQA Original Answer Reduced Confidence	What color is the flower ? yellow flower ? $0.827 \rightarrow 0.819$
<u>al., 2018]</u>	SNLI Premise Original Answer Reduced Confidence	Well dressed man and woman dancing in the street Two man is dancing on the street Contradiction dancing $0.977 \rightarrow 0.706$

- How much can be removed without change prediction? [Feng et al. 2018]
- Adversarial modifications
 - Additions [Addsent SQuAD; Jia & Lia
 - Syntactic Paraphrases [SCPN; <u>Iyyer et</u>
- Also reveal biases.

ging the	SQuAD Context Original	In 1899, John Jacob Astor IV invested \$100,000 Tesla to further develop and produce a new light system. Instead, Tesla used the money to fund Colorado Springs experiments. What did Tesla spend Astor's money on ?
	Reduced Confidence	did $0.78 \rightarrow 0.91$
ng, 2017]	VQA Original Answer Reduced Confidence	What color is the flower ? yellow flower ? $0.827 \rightarrow 0.819$
<u>al., 2018]</u>	SNLI Premise Original Answer Reduced Confidence	Well dressed man and woman dancing in the street Two man is dancing on the street Contradiction dancing $0.977 \rightarrow 0.706$

Method 3: Architectural Modifications

Method 3: Architectural Modifications

• Partial Input Baselines

Method 3: Architectural Modifications

- Partial Input Baselines
- Idea: if the model still makes the correct decision despite not receiving the full input, model likely relies on some bias

Method 3: Architectural Modifications

- Partial Input Baselines
- Idea: if the model still makes the correct decision despite not receiving the full input, model likely relies on some bias

UT-Austin | Swabha Swayamdipta

Annotation Artifacts in NLI [G^* ., Swayamdipta*, L., S., B., S., 2018]

Method 3: Architectural Modifications

- Partial Input Baselines
- Idea: if the model still makes the correct decision despite not receiving the full input, model likely relies on some bias

UT-Austin | Swabha Swayamdipta

Annotation Artifacts in NLI [G^* ., Swayamdipta*, L., S., B., S., 2018]

Method 3: Architectural Modifications

- Partial Input Baselines
- Idea: if the model still makes the correct decision despite not receiving the full input, model likely relies on some bias
- Also tried for VQA [Goyal et al. 2016], SQuAD [Kaushik & Lipton, 2018], among others.

UT-Austin | Swabha Swayamdipta

Annotation Artifacts in NLI [G^* ., Swayamdipta*, L., S., B., S., 2018]

Question: Can interpretability methods be used to remove biases?

Biases in NLP

- Dataset Biases
- Model Biases

- - Architectural Modifications

UT-Austin | Swabha Swayamdipta

This Lecture

Discovering Biases via Interpretability Methods

• Saliency Methods

Mitigating Biases

• Filtering Datasets

• Input Attribution

Auxiliary Objectives

Biases in NLP

- Dataset Biases
- Model Biases

- - Architectural Modifications

UT-Austin | Swabha Swayamdipta

This Lecture

Discovering Biases via Interpretability Methods

• Saliency Methods

Input Attribution

Mitigating Biases

- Filtering Datasets
- Auxiliary Objectives

Mitigation of Biases

Mitigation of Biases

• Once bias is demonstrated, the next steps involve mitigation (reduction) of biases.

Mitigation of Biases

- Once bias is demonstrated, the next steps involve mitigation (reduction) of biases.
- Two broad paradigms:

Mitigation of Biases

- Once bias is demonstrated, the next steps involve mitigation (reduction) of biases.
- Two broad paradigms:
 - Pre-specified (known) biases (task or dataset-specific)

Mitigation of Biases

- Once bias is demonstrated, the next steps involve mitigation (reduction) of biases.
- Two broad paradigms:
 - Pre-specified (known) biases (task or dataset-specific)
 - Unspecified biases (more general)

Case Study: Pre-specified Biases

Case Study: Pre-specified Biases

Case Study: Pre-specified Biases

Hate Speech in **Online Platforms**

Case Study: Pre-specified Biases

Hate Speech in **Online Platforms**

• Human moderation does not scale

Case Study: Pre-specified Biases

Hate Speech in **Online Platforms**

• Human moderation does not scale

• Spurred a great deal of research on automatic detection of hate speech

Case Study: Pre-specified Biases

Hate Speech in **Online Platforms**

• Human moderation does not scale

• Spurred a great deal of research on automatic detection of hate speech

UT-Austin | Swabha Swayamdipta

Some examples might contain offensive or triggering content

I hope this country can now try to get along

I hope this country can now try to get along

UT-Austin | Swabha Swayamdipta

Perspective

AP

Pre-specified biases in hate-speech detection

Pre-specified biases in hate-speech detection

UT-Austin | Swabha Swayamdipta

[<u>Sap et. al, 2019</u>]

Pre-specified biases in hate-speech detection

• Hate Speech Detection datasets are indeed biased

UT-Austin | Swabha Swayamdipta

[<u>Sap et. al, 2019</u>]

Pre-specified biases in hate-speech detection

• Hate Speech Detection datasets are indeed biased

• Identity Biases

UT-Austin | Swabha Swayamdipta

[<u>Sap et. al, 2019</u>]

I ídentífy as a black gay woman

Pre-specified biases in hate-speech detection

- Hate Speech Detection datasets are indeed biased
 - Identity Biases

- Profanity Biases
- Racial / Dialectal Biases

UT-Austin | Swabha Swayamdipta

[<u>Sap et. al, 2019</u>]

I identify as a black gay woman

Pre-specified biases in hate-speech detection

- Hate Speech Detection datasets are indeed biased
 - Identity Biases

- Profanity Biases
- Racial / Dialectal Biases

UT-Austin | Swabha Swayamdipta

[<u>Sap et. al, 2019</u>]

I identify as a black gay woman 60% 86% F*ing love this! sup, n*gga!

Unspecified biases

Unspecified biases

• May be too example-specific, and not general enough to explain the entirety of model behavior

Unspecified biases

- behavior
- NLI has many different biases!

UT-Austin | Swabha Swayamdipta

• May be too example-specific, and not general enough to explain the entirety of model

Unspecified biases

- behavior
- NLI has many different biases!

UT-Austin | Swabha Swayamdipta

• May be too example-specific, and not general enough to explain the entirety of model

Premise

Annotation Artifacts in NLI [<u>G*., Swayamdipta*, L., S., B., S., 2018</u>]

UT-Austin | Swabha Swayamdipta

Addressing Biases: Datasets

UT-Austin | Swabha Swayamdipta

Addressing Biases: Datasets

• One solution: Filtering / Downsampling the data to remove instances that "leak" the correct answer, but because of the wrong reasons.

UT-Austin | Swabha Swayamdipta

Addressing Biases: Datasets

• One solution: Filtering / Downsampling the data to remove instances that "leak" the correct answer, but because of the wrong reasons.

• Simple for known biases (rules / simple classifiers)

UT-Austin | Swabha Swayamdipta

Addressing Biases: Datasets

• One solution: Filtering / Downsampling the data to remove instances that "leak" the correct answer, but because of the wrong reasons.

• Simple for known biases (rules / simple classifiers)

• Also possible for unspecified biases!

• What instances to filter?

- What instances to filter?
 - correlations

UT-Austin | Swabha Swayamdipta

• Key intuition: Examples which are relatively easy for a model might contain spurious

- What instances to filter?
 - correlations
- Easy examples can be detected:

UT-Austin | Swabha Swayamdipta

• Key intuition: Examples which are relatively easy for a model might contain spurious

- What instances to filter?
 - correlations
- Easy examples can be detected:
 - By simple model architectures [AFLite; <u>LeBras et al., 2020</u>]

UT-Austin | Swabha Swayamdipta

• Key intuition: Examples which are relatively easy for a model might contain spurious

- What instances to filter?
 - correlations
- Easy examples can be detected:
 - By simple model architectures [AFLite; <u>LeBras et al., 2020</u>]
 - 2020]

UT-Austin | Swabha Swayamdipta

• Key intuition: Examples which are relatively easy for a model might contain spurious

• Based on how the training proceeds [Dataset Cartography; <u>Swayamdipta et al.</u>,

AFLite in action

UT-Austin | Swabha Swayamdipta

AFLite in action

• Detecting and reducing model biases by (ensembles of) simplified architectures.

UT-Austin | Swabha Swayamdipta

AFLite in action

• Detecting and reducing model biases by (ensembles of) simplified architectures.

UT-Austin | Swabha Swayamdipta

AFLite in action

• Detecting and reducing model biases by (ensembles of) simplified architectures.

İn

UT-Austin | Swabha Swayamdipta

AFLite in action

• Detecting and reducing model biases by (ensembles of) simplified architectures.

UT-Austin | Swabha Swayamdipta

Linear Classifier İ0 T İ1 AFLite . _ _ _ _ . **İ**2 - - - - - - -- - - - - - -İ3 _ _ _ _ _ _ - - - - - - -**İ**4 in action |____ - - - - -İn-4 -----_ _ _ _ _ _ _ İn-3 _ _ _ _ _ _ . - - - - - - -İn-2 _ _ _ _ _ _ În-1

In

Adversarial Filters of Dataset Biases [L., Swayamdipta, Z., B., P., S., C.]

UT-Austin | Swabha Swayamdipta

Training samples Correct predictions Incorrect predictions X

AFLite in action

İ0

İ1

i2

İ3

İ4

İn-4

İn-3

İn-2

İn-1

In

UT-Austin | Swabha Swayamdipta

Training samples Τ Correct predictions Incorrect predictions X

AFLite in action

İ0

İ1

i2

İ3

İ4

İn-4

İn-3

İn-2

İn-1

in

UT-Austin | Swabha Swayamdipta

Training samples Correct predictions Incorrect predictions

İ0

İ1

i2

İ3

İ4

İn-4

İn-3

İn-2

İn-1

İn

AFLite in action

UT-Austin | Swabha Swayamdipta

Training samples Correct predictions Incorrect predictions

İ0

İ1

i2

İ3

İ4

İn-4

İn-3

İn-2

İn-1

İn

AFLite in action

UT-Austin | Swabha Swayamdipta

Training samples Correct predictions Incorrect predictions

AFLite in action

İn-4 İn-3 In-2 İn-1 İn

io

İ1

i2

İ3

İ4

UT-Austin | Swabha Swayamdipta

İ3

İ4

i2

İn-3

İn-4

İn

İn-2

i₁

İ0

İn-1

AFLite in action

UT-Austin | Swabha Swayamdipta

İ4

İ2

İn-3

İn-4

İn

İn-2

İ1

İ0

İn-1

AFLite in action

UT-Austin | Swabha Swayamdipta

io

İ1

İ2

İ3

İk-4

İ_{k-3}

İ_{k-2}

İk-1

İk

AFLite in action

53

UT-Austin | Swabha Swayamdipta

X

Training samples Correct predictions Incorrect predictions

AFLite in action

				i			
				i			
		L i	i i	i j		i i	
		L 1	۱ I	L 1		L 1	
		<u> </u>		! !		1	
			!!				
		. ,	 . ,	 			
			 · ·	 			
		L i	i i	i i		i i	
		L 1	۱ I	L I		L 1	
		<u> </u>	<u> </u>	! !		1	
			: :				
			: :				
			i i	i i			
1							
						- r 	

k-4		
k-3		
k-2		
k-1		
k		

0

11

12

13

1	1	1	1	1	1	1			
	1	÷				i	1		
1	1	1	1	1		 	1		1
, i	1	÷	i			i i			
1			1			 			
r I	 I	, L			 I			' r 	
1	1	1	1						
1	I	÷	I			i			
1	1		1						
1	1	i	1	i		1			
I	'	1.	'						
r						: :			
	I	÷	I						
1	1	1	1						
1	i	i	i			i			
1			1						
I		i.	'			I I		i i	
r		-							
i	1	į.	1	j					
	1		1			1			
1	1	1	1						
1	I	÷	I			i			
1	1		1						
'									
r		, L		1	 I				
i	1	į.	1	j					
1	1								
1	1	1	1	1					
1	1		I						
I	'	Π.	'	1				۱ I	

UT-Austin | Swabha Swayamdipta

Training samples Correct predictions Incorrect predictions

- What instances to filter?
 - correlations
- Easy examples can be detected:
 - By simple model architectures [AFLite; <u>LeBras et al., 2020</u>]
 - 2020]

UT-Austin | Swabha Swayamdipta

• Key intuition: Examples which are relatively easy for a model might contain spurious

• Based on how the training proceeds [Dataset Cartography; <u>Swayamdipta et al.</u>,

Training Dynamics

correctness / confidence /

Dataset Cartography [Swayamdipta et. al, 2020] 55

variability

Training Dynamics

correctness V confidence

across E training epochs...

Dataset Cartography [Swayamdipta et. al, 2020] 55

UT-Austin | Swabha Swayamdipta

variability

Training Dynamics

confidence

• Ratio at which model prediction matches true class

$$\hat{c}_{i} = \frac{1}{E} \sum_{e=1}^{E} \mathbb{1}[y_{i}^{*} = \arg\max_{y} p_{\theta^{(e)}}(y \mid x_{i})]$$

across E training epochs...

Dataset Cartography [Swayamdipta et. al, 2020] 55

UT-Austin | Swabha Swayamdipta

variability

Training Dynamics

• Ratio at which model prediction matches true class

confidence

• Mean probability of the true class

$$\hat{c}_{i} = \frac{1}{E} \sum_{e=1}^{E} 1[y_{i}^{*} = \arg\max_{y} p_{\theta^{(e)}}(y \mid x_{i})]$$

$$\hat{E}_i = \frac{1}{E} \begin{bmatrix} 1 \\ e \end{bmatrix}$$

across E training epochs...

Dataset Cartography [Swayamdipta et. al, 2020] 55

UT-Austin | Swabha Swayamdipta

$\hat{\mu}_{i} = \frac{1}{E} \sum_{e=1}^{E} p_{\theta^{(e)}}(y_{i}^{*} \mid x_{i})$

variability

Training Dynamics

• Ratio at which model prediction matches true class

confidence

• Mean probability of the true class

$$\hat{c}_{i} = \frac{1}{E} \sum_{e=1}^{E} 1[y_{i}^{*} = \arg\max_{y} p_{\theta^{(e)}}(y \mid x_{i})]$$

$$\hat{E}_i = \frac{1}{E} \begin{bmatrix} 1 \\ e \end{bmatrix}$$

Dataset Cartography [Swayamdipta et. al, 2020] 55

UT-Austin | Swabha Swayamdipta

 $\hat{\mu}_{i} = \frac{1}{E} \sum_{e=1}^{E} p_{\theta^{(e)}}(y_{i}^{*} \mid x_{i})$

variability

• Standard deviation of the true class probability

$$\hat{\sigma}_{i} = \sqrt{\frac{\sum_{e=1}^{E} (p_{\theta^{(e)}}(y_{i}^{*} \mid x_{i}) - \hat{\mu})}{E}}$$

across E training epochs...

• Ratio at which model prediction matches true class

confidence

• Mean probability of the true class

$$\hat{c}_{i} = \frac{1}{E} \sum_{e=1}^{E} 1[y_{i}^{*} = \arg\max_{y} p_{\theta^{(e)}}(y \mid x_{i})]$$

$$\hat{E}_i = \frac{1}{E} \begin{bmatrix} 1 \\ e \end{bmatrix}$$

across E training epochs...

Dataset Cartography [Swayamdipta et. al, 2020] 55

UT-Austin | Swabha Swayamdipta

Training Dynamics

variability

• Standard deviation of the true class probability

$$p_{\theta^{(e)}}(y_i^* \mid x_i) \qquad \hat{\sigma}_i = \sqrt{\frac{\sum_{e=1}^{E} (p_{\theta^{(e)}}(y_i^* \mid x_i) - p_{e^{(e)}})}{E}}$$
ning epochs... By-product of training

Dataset Cartography [Swayamdipta et. al, 2020] 56

Dataset Cartography [Swayamdipta et. al, 2020] 56

UT-Austin | Swabha Swayamdipta

Standard deviation of the true class probability

Dataset Cartography

Dataset Cartography [Swayamdipta et. al, 2020] 57

Dataset Cartography

Dataset Cartography [Swayamdipta et. al, 2020] 57

Dataset Cartography

Dataset Cartography [Swayamdipta et. al, 2020] 57

Dataset Cartography

Dataset Cartography [Swayamdipta et. al, 2020] 57

Dataset Cartography

Dataset Cartography [Swayamdipta et. al, 2020] 57

Dataset Cartography [Swayamdipta et. al, 2020] 57

UT-Austin | Swabha Swayamdipta

Question: Doesn't removing data hurt performance?

UT-Austin | Swabha Swayamdipta

UT-Austin | Swabha Swayamdipta

UT-Austin | Swabha Swayamdipta

Addressing Biases: Models

• Can be used to reduce pre-specified biases

UT-Austin | Swabha Swayamdipta

Addressing Biases: Models

- Can be used to reduce pre-specified biases
 - e.g. Identity, Dialect, Profanity biases in Hate Speech Detection

UT-Austin | Swabha Swayamdipta

Addressing Biases: Models

- Can be used to reduce pre-specified biases
 - e.g. Identity, Dialect, Profanity biases in Hate Speech Detection
- Ensemble of bias-only and full model

UT-Austin | Swabha Swayamdipta

Addressing Biases: Models

- Can be used to reduce pre-specified biases
 - e.g. Identity, Dialect, Profanity biases in Hate Speech Detection
- Ensemble of bias-only and full model
- Bias-only model captures all the biases

UT-Austin | Swabha Swayamdipta

[Clark et al., 2019; He et al., 2019; Mahabadi et al., 2020]

Full

- Can be used to reduce pre-specified biases
 - e.g. Identity, Dialect, Profanity biases in Hate Speech Detection
- Ensemble of bias-only and full model
- Bias-only model captures all the biases
- Full model no longer focuses on biases

UT-Austin | Swabha Swayamdipta

Addressing Biases: Models

- Can be used to reduce pre-specified biases
 - e.g. Identity, Dialect, Profanity biases in Hate Speech Detection
- Ensemble of bias-only and full model
- Bias-only model captures all the biases
- Full model no longer focuses on biases

UT-Austin | Swabha Swayamdipta

Addressing Biases: Models

[Clark et al., 2019; He et al., 2019; Mahabadi et al., 2020]

Cause grandma's a bad b*ch and she had to let you know your man can become y'all's man if she pleases.

- Can be used to reduce pre-specified biases
 - e.g. Identity, Dialect, Profanity biases in Hate Speech Detection
- Ensemble of bias-only and full model
- Bias-only model captures all the biases
- Full model no longer focuses on biases

UT-Austin | Swabha Swayamdipta

Addressing Biases: Models

[Clark et al., 2019; He et al., 2019; Mahabadi et al., 2020]

Cause grandma's a bad b*ch and she had to let you know your man can become y'all's man if she pleases.

- Can be used to reduce pre-specified biases
 - e.g. Identity, Dialect, Profanity biases in Hate Speech Detection
- Ensemble of bias-only and full model
- Bias-only model captures all the biases
- Full model no longer focuses on biases

UT-Austin | Swabha Swayamdipta

Addressing Biases: Models

- Can be used to reduce pre-specified biases
 - e.g. Identity, Dialect, Profanity biases in Hate Speech Detection
- Ensemble of bias-only and full model
- Bias-only model captures all the biases
- Full model no longer focuses on biases

UT-Austin | Swabha Swayamdipta

Addressing Biases: Models

[Clark et al., 2019; He et al., 2019; Mahabadi et al., 2020]

Cause grandma's a bad b*ch and she had to let Ensemble you know your man can become y'all's man if she pleases. Let s look di 6 Full all features

Adversarial Methods

UT-Austin | Swabha Swayamdipta

Adversarial Methods

• Pre-specified biases

UT-Austin | Swabha Swayamdipta

Adversarial Methods

- Pre-specified biases

UT-Austin | Swabha Swayamdipta

• Can the model predict something about the input itself? This is typically the bias feature.

Adversarial Methods

- Pre-specified biases
- - models have gender bias [De-Arteaga et al., 2019]

UT-Austin | Swabha Swayamdipta

• Can the model predict something about the input itself? This is typically the bias feature.

• e.g. Can the model predict the gender from a professional bio? Given that we know

Adversarial Methods

- Pre-specified biases
- - models have gender bias [De-Arteaga et al., 2019]
- setting

UT-Austin | Swabha Swayamdipta

• Can the model predict something about the input itself? This is typically the bias feature.

• e.g. Can the model predict the gender from a professional bio? Given that we know

• Now, the auxiliary is discouraged (ensure you cannot predict the bias) in an adversarial

Adversarial Methods

- Pre-specified biases
- - models have gender bias [De-Arteaga et al., 2019]
- setting
- Might not entirely remove the information

UT-Austin | Swabha Swayamdipta

• Can the model predict something about the input itself? This is typically the bias feature.

• e.g. Can the model predict the gender from a professional bio? Given that we know

• Now, the auxiliary is discouraged (ensure you cannot predict the bias) in an adversarial

Bias Mitigation Summary

- Dataset Filtering Methods
 - Algorithms that differentiate data instances (AFLite, Dataset Cartography)
 - Can be applied to unspecified biases
- Models with Auxiliary Objectives
 - Ensembles, Adversarial Approaches
 - Effective for pre-specified biases

UT-Austin | Swabha Swayamdipta

Bias Mitigation Summary

- Dataset Filtering Methods
 - Algorithms that differentiate data instances (AFLite, Dataset Cartography)
 - Can be applied to unspecified biases
- Models with Auxiliary Objectives
 - Ensembles, Adversarial Approaches
 - Effective for pre-specified biases

UT-Austin | Swabha Swayamdipta

How effective are these methods?

Bias Mitigation Summary

- Dataset Filtering Methods
 - Algorithms that differentiate data instances (AFLite, Dataset Cartography)
 - Can be applied to unspecified biases
- Models with Auxiliary Objectives
 - Ensembles, Adversarial Approaches
 - Effective for pre-specified biases

UT-Austin | Swabha Swayamdipta

How effective are these methods?

Be careful of the term "debiasing"...

Biases in NLP

- Dataset Biases
- Model Biases

- Discovering Biases via Interpretability Methods
 - Saliency Methods
 - Input Attribution
 - Architectural Modifications

UT-Austin | Swabha Swayamdipta

This Lecture

Mitigating Biases

- Filtering Datasets
- Auxiliary Objectives

Summary

UT-Austin | Swabha Swayamdipta

Summary

• Biases are present wherever humans are involved: data collection & model design

UT-Austin | Swabha Swayamdipta

- Biases are present wherever humans are involved: data collection & model design
 - The term "bias" can be overloaded: biases can be "good" or "bad"

- Biases are present wherever humans are involved: data collection & model design
 - The term "bias" can be overloaded: biases can be "good" or "bad"
- Interpretability methods can be used to detect and discover biases in models and data

- Biases are present wherever humans are involved: data collection & model design
 - The term "bias" can be overloaded: biases can be "good" or "bad"
- Interpretability methods can be used to detect and discover biases in models and data
- Bias discovery and bias mitigation is not necessarily a pipeline

- Biases are present wherever humans are involved: data collection & model design
 - The term "bias" can be overloaded: biases can be "good" or "bad"
- Interpretability methods can be used to detect and discover biases in models and data
- Bias discovery and bias mitigation is not necessarily a pipeline
- Bias mitigation methods either focus on models or datasets.

Thank you! Questions?