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Recap: Phrase Structure
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Parent Annotation
(Johnson, 1998)

SROOT

NPS

DTNP

The

NNNP

luxury

NNNP

auto

NNNP

maker

NPS

JJNP

last

NNNP

year

VPS

VBDVP

sold

NPVP

CDNP

1,214

NNNP

cars

PPVP

INPP

in

NPPP

DTNP

the

NNPNP

U.S.

Increases the “vertical” Markov order:

p(children | parent, grandparent)
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Headedness
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Suggests “horizontal” markovization:

p(children | parent) = p(head | parent) ·
∏
i

p(ith sibling | head, parent)

4 / 95



Lexicalization

Ssold
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Each node shares a lexical head with its head child.
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Dependencies

Informally, you can think of dependency structures as a transformation of
phrase-structures that

I maintains the word-to-word relationships induced by lexicalization,

I adds labels to them, and

I eliminates the phrase categories.

There are also linguistic theories built on dependencies (Tesnière, 1959; Mel’čuk,
1987), as well as treebanks corresponding to those.

I Free(r)-word order languages (e.g., Czech)
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Dependency Tree: Definition

Let x = 〈x1, . . . , xn〉 be a sentence. Add a special root symbol as “x0.”

A dependency tree consists of a set of tuples 〈p, c, `〉, where

I p ∈ {0, . . . , n} is the index of a parent

I c ∈ {1, . . . , n} is the index of a child

I ` ∈ L is a label

Different annotation schemes define different label sets L, and different constraints on
the set of tuples. Most commonly:

I The tuple is represented as a directed edge from xp to xc with label `.

I The directed edges form an arborescence (directed tree) with x0 as the root
(sometimes denoted root).
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Example
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Phrase-structure tree.
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Example
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9 / 95



Example

Swash

NPwe

Pronounwe

we

VPwash

Verbwash

wash

NPcats

Determinerour

our

Nouncats

cats

Phrase-structure tree with heads, lexicalized.
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Example

we wash our cats

“Bare bones” dependency tree.
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Example

we wash our cats who stink
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Example

we vigorously wash our cats who stink
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Content Heads vs. Function Heads
Credit: Nathan Schneider

little kids were always watching birds with fish

little kids were always watching birds with fish
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Labels

kids saw birds with fish

root

sbj dobj prep

pobj

Key dependency relations captured in the labels include: subject, direct object,
preposition object, adjectival modifier, adverbial modifier.

In this lecture, I will mostly not discuss labels, to keep the algorithms simpler.
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Coordination Structures

we vigorously wash our cats and dogs who stink

The bugbear of dependency syntax.
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Example

we vigorously wash our cats and dogs who stink

Make the first conjunct the head?
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Example

we vigorously wash our cats and dogs who stink

Make the coordinating conjunction the head?
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Example

we vigorously wash our cats and dogs who stink

Make the second conjunct the head?
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Nonprojective Example

A hearing is scheduled on the issue today .

ROOT

ATT

ATT

SBJ

PU

VC

TMP

PC

ATT
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Dependency Schemes

I Direct annotation.
I Transform the treebank: define “head rules” that can select the head child of any

node in a phrase-structure tree and label the dependencies.
I More powerful, less local rule sets, possibly collapsing some words into arc labels.
I Stanford dependencies are a popular example (de Marneffe et al., 2006).
I Only results in projective trees.

I Rule based dependencies, followed by manual correction.
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Approaches to Dependency Parsing

1. Chu-Liu-Edmonds algorithm for arborescences (directed trees).

2. Transition-based parsing with a stack.

3. Dynamic programming with the Eisner algorithm.
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Graph-Based Dependency Parsing

Selects structures which are globally optimal.

Start with a fully connected graph. Set of O(n2) edges, E.

No incoming edges to x0, ensuring that it will be the root.
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First-Order Graph-Based (FOG) Dependency Parsing
(McDonald et al., 2005)

Every possible directed edge e between a parent p and a child c gets a local score, s(e).

y∗ = argmax
y⊂E

sglobal(y) = argmax
y⊂E

∑
e∈y

s(e)

subject to the constraint that y is an arborescence

Classical algorithm to efficiently solve this problem: Chu and Liu (1965), Edmonds
(1967)
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Chu-Liu-Edmonds Intuitions

I Every non-root node needs exactly one incoming edge.

I In fact, every connected component that doesn’t contain x0 needs exactly one
incoming edge.

I Maximum spanning tree.
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Chu-Liu-Edmonds Intuitions

I Every non-root node needs exactly one incoming edge.

I In fact, every connected component that doesn’t contain x0 needs exactly one
incoming edge.

I Maximum spanning tree.

High-level view of the algorithm:

1. For every c, pick an incoming edge (i.e., pick a parent)—greedily.

2. If this forms an arborescence, you are done!

3. Otherwise, it’s because there’s a cycle, C.
I Arborescences can’t have cycles, so some edge in C needs to be kicked out.
I We also need to find an incoming edge for C.
I Choosing the incoming edge for C determines which edge to kick out.
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Chu-Liu-Edmonds: Recursive (Inefficient) Definition

def maxArborescence(V , E, root):
# returns best arborescence as a map from each node to its parent
for c in V \ root:

bestInEdge[c]← argmaxe∈E:e=〈p,c〉 e.s # i.e., s(e)

if bestInEdge contains a cycle C:
# build a new graph where C is contracted into a single node
vC ← new Node()
V ′ ← V ∪ {vC} \ C
E′ ← {adjust(e, vC) for e ∈ E \ C}
A← maxArborescence(V ′, E′, root)
return {e.original for e ∈ A} ∪ C \ {A[vC ].kicksOut}

# each node got a parent without creating any cycles
return bestInEdge
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Understanding Chu-Liu-Edmonds

There are two stages:

I Contraction (the stuff before the recursive call)

I Expansion (the stuff after the recursive call)
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Contraction Example

V1

ROOT

V3V2

a : 5 b : 1 c : 1

f : 5d : 11

h : 9

e : 4

i : 8g : 10

bestInEdge

V1
V2
V3

kicksOut
a
b
c
d
e
f
g
h
i
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Contraction Example

V1
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V3V2

a : 5 b : 1 c : 1
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Contraction Example

V1

ROOT

V3V2

a : 5 − 10 b : 1 − 11 c : 1

f : 5d : 11

h : 9 − 10

e : 4

i : 8 − 11g : 10

V4

bestInEdge

V1 g
V2 d
V3

kicksOut
a g
b d
c
d
e
f
g
h g
i d
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Contraction Example

V4

ROOT

V3

b : −10 c : 1

f : 5

a : −5

h : −1

e : 4

i : −3

bestInEdge

V1 g
V2 d
V3
V4

kicksOut

a g
b d
c
d
e
f
g
h g
i d
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Contraction Example

V4

ROOT

V3

b : −10 c : 1

f : 5

a : −5

h : −1

e : 4

i : −3

bestInEdge

V1 g
V2 d
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V4
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b d
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d
e
f
g
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Contraction Example

V4

ROOT

V3

b : −10 c : 1

f : 5

a : −5

h : −1

e : 4

i : −3

bestInEdge

V1 g
V2 d
V3 f
V4 h

kicksOut

a g
b d
c
d
e
f
g
h g
i d
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Contraction Example

V4

ROOT

V3

b : −10 − −1 c : 1 − 5

f : 5

a : −5 − −1

h : −1

e : 4

i : −3

V5

bestInEdge

V1 g
V2 d
V3 f
V4 h
V5

kicksOut

a g, h
b d, h
c f
d
e
f
g
h g
i d
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Contraction Example

V5

ROOT

b : −9

a : −4 c : −4

bestInEdge

V1 g
V2 d
V3 f
V4 h
V5

kicksOut

a g, h
b d, h
c f
d
e f
f
g
h g
i d
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Contraction Example

V5

ROOT

b : −9

a : −4 c : −4

bestInEdge

V1 g
V2 d
V3 f
V4 h
V5 a

kicksOut

a g, h
b d, h
c f
d
e f
f
g
h g
i d
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Chu-Liu-Edmonds: Contraction

I For each non-root node v, set bestInEdge[v] to be its highest scoring incoming
edge.

I If a cycle C is formed:
I contract the nodes in C into a new node vC

adjust subroutine on next slide performs the following:
I Edges incoming to any node in C now get destination vC
I For each node v in C, and for each edge e incoming to v from outside of C:

I Set e.kicksOut to bestInEdge[v], and
I Set e.s to be e.s− e.kicksOut.s

I Edges outgoing from any node in C now get source vC

I Repeat until every non-root node has an incoming edge and no cycles are formed
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Chu-Liu-Edmonds: Edge Adjustment Subroutine

def adjust(e, vC):
e′ ← copy(e)
e′.original← e
if e.dest ∈ C:

e′.dest← vC
e′.kicksOut← bestInEdge[e.dest]
e′.s← e.s− e′.kicksOut.s

elif e.src ∈ C:
e′.src← vC

return e′
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Expansion Example

V5

ROOT

b : −9

a : −4 c : −4

bestInEdge

V1 g
V2 d
V3 f
V4 h
V5 a

kicksOut

a g, h
b d, h
c f
d
e f
f
g
h g
i d
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Expansion Example

V5

ROOT

b : −9
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bestInEdge

V1 a �g
V2 d
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V4 a �h
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d
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f
g
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i d
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Expansion Example
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Expansion Example
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Chu-Liu-Edmonds: Expansion

After the contraction stage, every contracted node will have exactly one bestInEdge.
This edge will kick out one edge inside the contracted node, breaking the cycle.

I Go through each bestInEdge e in the reverse order that we added them

I Lock down e, and remove every edge in kicksOut(e) from bestInEdge.
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Chu-Liu-Edmonds: Recursive (Inefficient) Definition

def maxArborescence(V , E, root):
# returns best arborescence as a map from each node to its parent
for c in V \ root:

bestInEdge[c]← argmaxe∈E:e=〈p,c〉 e.s # i.e., s(e)

if bestInEdge contains a cycle C:
# build a new graph where C is contracted into a single node
vC ← new Node()
V ′ ← V ∪ {vC} \ C
E′ ← {adjust(e, vC) for e ∈ E \ C}
A← maxArborescence(V ′, E′, root)
return {e.original for e ∈ A} ∪ C \ {A[vC ].kicksOut}

# each node got a parent without creating any cycles
return bestInEdge
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Observation

The set of arborescences strictly includes the set of projective dependency trees.

CLE can handle both projective and non-projective dependency parsing.

Is this a good thing or a bad thing?
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Chu-Liu-Edmonds: Notes

I This is a greedy algorithm with a clever form of delayed backtracking to recover
from inconsistent decisions (cycles).

I CLE is exact: it always recovers an optimal arborescence.
I What about labeled dependencies?

I As a matter of preprocessing, for each 〈p, c〉, keep only the top-scoring labeled edge.

I Tarjan (1977) offered a more efficient, but unfortunately incorrect,
implementation.
Camerini et al. (1979) corrected it.
The approach is not recursive; instead using a disjoint set data structure to keep
track of collapsed nodes.
Even better: Gabow et al. (1986) used a Fibonacci heap to keep incoming edges
sorted, and finds cycles in a more sensible way. Also constrains root to have only
one outgoing edge.
With these tricks, O(n2 + n log n) runtime.
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André F. T. Martins, Miguel Almeida, and Noah A. Smith. Turning on the turbo: Fast third-order
non-projective turbo parsers. In Proc. of ACL, 2013.

59 / 95



References II

Ryan McDonald, Fernando Pereira, Kiril Ribarov, and Jan Hajic. Non-projective dependency parsing using
spanning tree algorithms. In Proceedings of HLT-EMNLP, 2005. URL
http://www.aclweb.org/anthology/H/H05/H05-1066.pdf.
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